Survival benefit of lobectomy over gross-total resection without lobectomy in cases of glioblastoma in the noneloquent area: a retrospective study

Restricted access

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $505.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $600.00

OBJECTIVE

Following resection of glioblastoma (GBM), microscopic remnants of the GBM tumor remaining in nearby tissue cause tumor recurrence more often than for other types of tumors, even after gross-total resection (GTR). Although surgical oncologists traditionally resect some of the surrounding normal tissue, whether further removal of nearby tissue may improve survival in GBM patients is unknown. In this single-center retrospective study, the authors assessed whether lobectomy confers a survival benefit over GTR without lobectomy when treating GBMs in the noneloquent area.

METHODS

The authors selected 40 patients who had undergone GTR of a histopathologically diagnosed isocitrate dehydrogenase (IDH)–wild type GBM in the right frontal or temporal lobe and divided the patients into 2 groups according to whether GTR of the tumor involved lobectomy, defined as a supratotal resection (SupTR group, n = 20) or did not (GTR group, n = 20). Progression-free survival (PFS), overall survival (OS), and Karnofsky Performance Status (KPS) scores were compared between groups (p ≤ 0.05 for statistically significant differences).

RESULTS

The median postoperative PFS times for each group were as follows: GTR group, 11.5 months (95% CI 8.8–14.2) and SupTR group, 30.7 months (95% CI 4.3–57.1; p = 0.007). The median postoperative OS times for each group were as follows: GTR group, 18.7 months (95% CI 14.3–23.1) and SupTR group, 44.1 months (95% CI 25.1–63.1; p = 0.040). The mean postoperative KPS scores (GTR, 76.5; SupTR, 77.5; p = 0.904) were not significantly different. In multivariate analysis, survival for the SupTR group was significantly longer than that for the GTR group in terms of both PFS (HR 0.230; 95% CI 0.090–0.583; p = 0.002) and OS (HR 0.247; 95% CI 0.086–0.704; p = 0.009).

CONCLUSIONS

In cases of completely resectable, noneloquent-area GBMs, SupTR provides superior PFS and OS without negatively impacting patient performance.

ABBREVIATIONS 5-ALA = 5-aminolevulinic acid; DTI = diffusion tensor imaging; GBM = glioblastoma; GTR = gross-total resection; IDH = isocitrate dehydrogenase; KPS = Karnofsky Performance Status; MGMT = O6-DNA-methylguanine methyltransferase; OS = overall survival; PFS = progression-free survival; SupTR = supratotal resection.
Article Information

Contributor Notes

Correspondence Jong Hee Chang: Severance Hospital, Yonsei University Health System, Seoul, Republic of Korea. changjh@yuhs.ac.INCLUDE WHEN CITING Published online March 1, 2019; DOI: 10.3171/2018.12.JNS182558.

T.H.R. and S.G.K. contributed equally to this work.

Disclosures The authors report no conflict of interest concerning the materials or methods used in this study or the findings specified in this paper.
Headings
References
  • 1

    Adeberg SBostel TKönig LWelzel TDebus JCombs SE: A comparison of long-term survivors and short-term survivors with glioblastoma, subventricular zone involvement: a predictive factor for survival? Radiat Oncol 9:952014

    • Search Google Scholar
    • Export Citation
  • 2

    Adeberg SKönig LBostel THarrabi SWelzel TDebus J: Glioblastoma recurrence patterns after radiation therapy with regard to the subventricular zone. Int J Radiat Oncol Biol Phys 90:8868932014

    • Search Google Scholar
    • Export Citation
  • 3

    Aldave GTejada SPay EMarigil MBejarano BIdoate MA: Prognostic value of residual fluorescent tissue in glioblastoma patients after gross total resection in 5-aminolevulinic acid-guided surgery. Neurosurgery 72:9159212013

    • Search Google Scholar
    • Export Citation
  • 4

    Barajas RF JrHess CPPhillips JJVon Morze CJYu JPChang SM: Super-resolution track density imaging of glioblastoma: histopathologic correlation. AJNR Am J Neuroradiol 34:131913252013

    • Search Google Scholar
    • Export Citation
  • 5

    Burks JDBonney PAConner AKGlenn CABriggs RGBattiste JD: A method for safely resecting anterior butterfly gliomas: the surgical anatomy of the default mode network and the relevance of its preservation. J Neurosurg 126:179518112017

    • Search Google Scholar
    • Export Citation
  • 6

    Chen LChaichana KLKleinberg LYe XQuinones-Hinojosa ARedmond K: Glioblastoma recurrence patterns near neural stem cell regions. Radiother Oncol 116:2943002015

    • Search Google Scholar
    • Export Citation
  • 7

    D’Amico RSEnglander ZKCanoll PBruce JN: Extent of resection in glioma—a review of the cutting edge. World Neurosurg 103:5385492017

    • Search Google Scholar
    • Export Citation
  • 8

    Dandy WE: Removal of right cerebral hemisphere for certain tumors with hemiplegia. J Am Med Assoc 90:8238251928

  • 9

    de Leeuw CNVogelbaum MA: Supratotal resection in glioma: a systematic review. Neuro Oncol [epub ahead of print] 2018

  • 10

    Duffau H: Is supratotal resection of glioblastoma in noneloquent areas possible? World Neurosurg 82:e101e1032014

  • 11

    Duffau H: Long-term outcomes after supratotal resection of diffuse low-grade gliomas: a consecutive series with 11-year follow-up. Acta Neurochir (Wien) 158:51582016

    • Search Google Scholar
    • Export Citation
  • 12

    Esquenazi YFriedman ELiu ZZhu JJHsu STandon N: The survival advantage of “supratotal” resection of glioblastoma using selective cortical mapping and the subpial technique. Neurosurgery 81:2752882017

    • Search Google Scholar
    • Export Citation
  • 13

    Eyüpoglu IYHore NMerkel ABuslei RBuchfelder MSavaskan N: Supra-complete surgery via dual intraoperative visualization approach (DiVA) prolongs patient survival in glioblastoma. Oncotarget 7:25755257682016

    • Search Google Scholar
    • Export Citation
  • 14

    Grabowski MMRecinos PFNowacki ASSchroeder JLAngelov LBarnett GH: Residual tumor volume versus extent of resection: predictors of survival after surgery for glioblastoma. J Neurosurg 121:111511232014

    • Search Google Scholar
    • Export Citation
  • 15

    Gupta TNair VPaul SNKannan SMoiyadi AEpari S: Can irradiation of potential cancer stem-cell niche in the subventricular zone influence survival in patients with newly diagnosed glioblastoma? J Neurooncol 109:1952032012

    • Search Google Scholar
    • Export Citation
  • 16

    Halsted WS: I. The results of operations for the cure of cancer of the breast performed at the Johns Hopkins Hospital from June, 1889, to January, 1894. Ann Surg 20:4975551894

    • Search Google Scholar
    • Export Citation
  • 17

    Kolakshyapati MAdhikari RBKarlowee VTakayasu TNosaka RAmatya VJ: Nonenhancing peritumoral hyperintense lesion on diffusion-weighted imaging in glioblastoma: a novel diagnostic and specific prognostic indicator. J Neurosurg 128:6676782018

    • Search Google Scholar
    • Export Citation
  • 18

    Konishi YMuragaki YIseki HMitsuhashi NOkada Y: Patterns of intracranial glioblastoma recurrence after aggressive surgical resection and adjuvant management: retrospective analysis of 43 cases. Neurol Med Chir (Tokyo) 52:5775862012

    • Search Google Scholar
    • Export Citation
  • 19

    Lacroix MAbi-Said DFourney DRGokaslan ZLShi WDeMonte F: A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg 95:1901982001

    • Search Google Scholar
    • Export Citation
  • 20

    Lee JHLee JEKahng JYKim SHPark JSYoon SJ: Human glioblastoma arises from subventricular zone cells with low-level driver mutations. Nature 560:2432472018

    • Search Google Scholar
    • Export Citation
  • 21

    Lee PSPardini JHendrickson RDestefino VPopescu AGhearing G: Short-term neurocognitive outcomes following anterior temporal lobectomy. Epilepsy Behav 62:1401462016

    • Search Google Scholar
    • Export Citation
  • 22

    Li YMSuki DHess KSawaya R: The influence of maximum safe resection of glioblastoma on survival in 1229 patients: Can we do better than gross-total resection? J Neurosurg 124:9779882016

    • Search Google Scholar
    • Export Citation
  • 23

    Lim DACha SMayo MCChen MHKeles EVandenBerg S: Relationship of glioblastoma multiforme to neural stem cell regions predicts invasive and multifocal tumor phenotype. Neuro Oncol 9:4244292007

    • Search Google Scholar
    • Export Citation
  • 24

    Milano MTOkunieff PDonatello RSMohile NASul JWalter KA: Patterns and timing of recurrence after temozolomide-based chemoradiation for glioblastoma. Int J Radiat Oncol Biol Phys 78:114711552010

    • Search Google Scholar
    • Export Citation
  • 25

    Minniti GAmelio DAmichetti MSalvati MMuni RBozzao A: Patterns of failure and comparison of different target volume delineations in patients with glioblastoma treated with conformal radiotherapy plus concomitant and adjuvant temozolomide. Radiother Oncol 97:3773812010

    • Search Google Scholar
    • Export Citation
  • 26

    Nagashima GSuzuki RHokaku HTakahashi MMiyo TAsai J: Graphic analysis of microscopic tumor cell infiltration, proliferative potential, and vascular endothelial growth factor expression in an autopsy brain with glioblastoma. Surg Neurol 51:2922991999

    • Search Google Scholar
    • Export Citation
  • 27

    Nayel MHAwad IAMagdinec MChelune GJLüders H: Anterior temporal lobectomy with microsurgical resection of mesial structures: Surgical technique and results in 50 consecutive patients with intractable epilepsy. J Epilepsy 4:1271381991

    • Search Google Scholar
    • Export Citation
  • 28

    Park HHRoh THKang SGKim EHHong CKKim SH: Pseudoprogression in glioblastoma patients: the impact of extent of resection. J Neurooncol 126:5595662016

    • Search Google Scholar
    • Export Citation
  • 29

    Pessina FNavarria PCozzi LAscolese AMSimonelli MSantoro A: Maximize surgical resection beyond contrast-enhancing boundaries in newly diagnosed glioblastoma multiforme: is it useful and safe? A single institution retrospective experience. J Neurooncol 135:1291392017

    • Search Google Scholar
    • Export Citation
  • 30

    Quant ECWen PY: Response assessment in neuro-oncology. Curr Oncol Rep 13:50562011

  • 31

    Roh THPark HHKang SGMoon JHKim EHHong CK: Long-term outcomes of concomitant chemoradiotherapy with temozolomide for newly diagnosed glioblastoma patients: a single-center analysis. Medicine (Baltimore) 96:e74222017

    • Search Google Scholar
    • Export Citation
  • 32

    Roh THSung KSKang SGMoon JHKim EHKim SH: Effectiveness of navigation-guided cyst aspiration before resection of large cystic brain tumors: a proof of concept for more radical surgery. Acta Neurochir (Wien) 159:194719542017

    • Search Google Scholar
    • Export Citation
  • 33

    Sanai NAlvarez-Buylla ABerger MS: Neural stem cells and the origin of gliomas. N Engl J Med 353:8118222005

  • 34

    Sanai NPolley MYMcDermott MWParsa ATBerger MS: An extent of resection threshold for newly diagnosed glioblastomas. J Neurosurg 115:382011

    • Search Google Scholar
    • Export Citation
  • 35

    Sanai NTramontin ADQuiñones-Hinojosa ABarbaro NMGupta NKunwar S: Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature 427:7407442004

    • Search Google Scholar
    • Export Citation
  • 36

    Sarkis RABusch RMFloden DChapin JSKalman Kenney CJehi L: Predictors of decline in verbal fluency after frontal lobe epilepsy surgery. Epilepsy Behav 27:3263292013

    • Search Google Scholar
    • Export Citation
  • 37

    Sawaya R: Extent of resection in malignant gliomas: a critical summary. J Neurooncol 42:3033051999

  • 38

    Schucht PKnittel SSlotboom JSeidel KMurek MJilch A: 5-ALA complete resections go beyond MR contrast enhancement: shift corrected volumetric analysis of the extent of resection in surgery for glioblastoma. Acta Neurochir (Wien) 156:3053122014

    • Search Google Scholar
    • Export Citation
  • 39

    Stupp RMason WPvan den Bent MJWeller MFisher BTaphoorn MJ: Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:9879962005

    • Search Google Scholar
    • Export Citation
  • 40

    Tamura MOhye CNakazato Y: Pathological anatomy of autopsy brain with malignant glioma. Neurol Med Chir (Tokyo) 33:77801993

  • 41

    Turner JDAbla AASanai N: Identification of the glioma cell of origin. World Neurosurg 78:2002012012

  • 42

    Wen HTDa Róz LMRhoton AL JrCastro LHTeixeira MJ: Frontal lobe decortication (frontal lobectomy with ventricular preservation) in epilepsy—part 1: anatomic landmarks and surgical technique. World Neurosurg 98:3473642017

    • Search Google Scholar
    • Export Citation
  • 43

    Yamahara TNuma YOishi TKawaguchi TSeno TAsai A: Morphological and flow cytometric analysis of cell infiltration in glioblastoma: a comparison of autopsy brain and neuroimaging. Brain Tumor Pathol 27:81872010

    • Search Google Scholar
    • Export Citation
  • 44

    Yan JLvan der Hoorn ALarkin TJBoonzaier NRMatys TPrice SJ: Extent of resection of peritumoral diffusion tensor imaging-detected abnormality as a predictor of survival in adult glioblastoma patients. J Neurosurg 126:2342412017

    • Search Google Scholar
    • Export Citation
  • 45

    Yordanova YNMoritz-Gasser SDuffau H: Awake surgery for WHO Grade II gliomas within “noneloquent” areas in the left dominant hemisphere: toward a “supratotal” resection. Clinical article. J Neurosurg 115:2322392011

    • Search Google Scholar
    • Export Citation
Metrics

Metrics

All Time Past Year Past 30 Days
Abstract Views 394 394 291
Full Text Views 87 87 55
PDF Downloads 114 114 64
EPUB Downloads 0 0 0
PubMed
Google Scholar