A new model of experimental hemispherotomy in young adult Rattus norvegicus: a neural tract tracing and SPECT in vivo study

Restricted access

OBJECTIVE

The objective of this study was to describe a new experimental model of hemispherotomy performed on laboratory animals.

METHODS

Twenty-six male young adult Wistar rats were distributed into two groups (surgery and control). The nonfluorescent anterograde neurotracer biotinylated dextran amine (BDA; 10,000 MW) was microinjected into the motor cortex area (M1) according to The Rat Brain in Stereotaxic Coordinates atlas to identify pathways and fibers disconnected after the experimental hemispherectomy. SPECT tomographic images of 99mTc hexamethylpropyleneamine oxime were obtained to verify perfusion in functioning areas of the disconnected and intact brain. A reproducible and validated surgical procedure is described in detail, including exact measurements and anatomical relationships. An additional 30 rodents (n = 10 rats per group) were divided into naïve, sham, and hemispherotomy groups and underwent the rotarod test.

RESULTS

Cortico-cortical neural pathways were identified crossing the midline and contacting neuronal perikarya in the contralateral brain hemisphere in controls, but not in animals undergoing hemispherotomy. There was an absence of perfusion in the left side of the brain of the animals undergoing hemispherotomy. Motor performance was significantly affected by brain injuries, increasing the number of attempts to maintain balance on the moving cylinder in the rotarod test at 10 and 30 days after the hemispherotomy, with a tendency to minimize the motor performance deficit over time.

CONCLUSIONS

The present findings show that the technique reproduced neural disconnection with minimal resection of brain parenchyma in young adult rats, thereby duplicating the hemispherotomy procedures in human patients.

ABBREVIATIONS BDA = biotinylated dextran amine; CPu = caudatus/putamen; HMPAO = hexamethylpropyleneamine oxime.
Article Information

Contributor Notes

Correspondence Norberto Cysne Coimbra: Ribeirão Preto Medical School of the University of São Paulo, Brazil. nccoimbr@fmrp.usp.br.INCLUDE WHEN CITING Published online June 8, 2018; DOI: 10.3171/2017.12.JNS171150.Disclosures Dr. Matias reports a financial relationship with Conselho Nacional de Desenvolvimento Cientifico e Tecnológico (CNPq; National Council for Scientific and Technological Development), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP; São Paulo Research Foundation), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES; Coordination for the Improvement of Higher Education Personnel).

© AANS, except where prohibited by US copyright law.

Headings
References
  • 1

    Akakin AYılmaz BAkakin DDagbasi NKilic T: Three dimensional anatomical microdissection of rat brain using fiber dissection technique. J Anat Soc India 63:1171242014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2

    Anderson VSpencer-Smith MWood A: Do children really recover better? Neurobehavioural plasticity after early brain insult. Brain 134:219722212011

  • 3

    Axelson HWWinkler TFlygt JDjupsjö AHånell AMarklund N: Plasticity of the contralateral motor cortex following focal traumatic brain injury in the rat. Restor Neurol Neurosci 31:73852013

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4

    Brus-Ramer MCarmel JBMartin JH: Motor cortex bilateral motor representation depends on subcortical and interhemispheric interactions. J Neurosci 29:619662062009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5

    Bulteau CJambaqué IChiron CRodrigo SDorfmüller GDulac O: Language plasticity after hemispherotomy of the dominant hemisphere in 3 patients: implication of non-linguistic networks. Epilepsy Behav 69:86942017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6

    Carvalho MCSantos JMBassi GSBrandão ML: Participation of NK1 receptors of the amygdala on the processing of different types of fear. Neurobiol Learn Mem 102:20272013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7

    Castellan-Baldan Lda Costa Kawasaki MRibeiro SJCalvo FCorrêa VMACoimbra NC: Topographic and functional neuroanatomical study of GABAergic disinhibitory striatum-nigral inputs and inhibitory nigrocollicular pathways: neural hodology recruiting the substantia nigra, pars reticulata, for the modulation of the neural activity in the inferior colliculus involved with panic-like emotions. J Chem Neuroanat 32:1272006

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8

    Coimbra NCFreitas RLSavoldi MCastro-Souza CSegato ENKishi R: Opioid neurotransmission in the post-ictal analgesia: involvement of μ1-opioid receptor. Brain Res 903:2162212001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9

    Cunha AOMortari MROliveira LCarolino ROCoutinho-Netto Jdos Santos WF: Anticonvulsant effects of the wasp Polybia ignobilis venom on chemically induced seizures and action on GABA and glutamate receptors. Comp Biochem Physiol C Toxicol Pharmacol 141:50572005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10

    de Bode SFirestine AMathern GWDobkin B: Residual motor control and cortical representations of function following hemispherectomy: effects of etiology. J Child Neurol 20:64752005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11

    de Faria O JrPama EACEvans KLuzhynskaya AKaradottir RT: Neuroglial interactions underpinning myelin plasticity. Dev Neurobiol 78:931072018

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12

    de Freitas RLMedeiros Pda Silva JAde Oliveira RCde Oliveira RUllah F: The μ1-opioid receptor and 5-HT2A- and 5HT2C-serotonergic receptors of the locus coeruleus are critical in elaborating hypoalgesia induced by tonic and tonic-clonic seizures. Neuroscience 336:1331452016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13

    De Ribaupierre SDelalande O: Hemispherotomy and other disconnective techniques. Neurosurg Focus 25(3):E142008

  • 14

    Delalande OBulteau CDellatolas GFohlen MJalin CBuret V: Vertical parasagittal hemispherotomy: surgical procedures and clinical long-term outcomes in a population of 83 children. Neurosurgery 60 (2 Suppl 1):ONS19ONS322007

    • Search Google Scholar
    • Export Citation
  • 15

    Delalande ODorfmüller G: [Parasagittal vertical hemispherotomy: surgical procedure.] Neurochirurgie 54:3533572008 (Fr)

  • 16

    Delalande OPinard JMBasdevant C: Hemispherotomy: a new procedure for central disconnection. Epilepsia 33 (Suppl 3):991001992 (Abstract)

    • Search Google Scholar
    • Export Citation
  • 17

    Dunham NWMiya TS: A note on a simple apparatus for detecting neurological deficit in rats and mice. J Am Pharm Assoc 46:2082091957

  • 18

    Fachim HACunha AOPereira ACBeleboni ROGobbo-Neto LLopes NP: Neurobiological activity of Parawixin 10, a novel anticonvulsant compound isolated from Parawixia bistriata spider venom (Araneidae: Araneae). Epilepsy Behav 22:1581642011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19

    Feeney DMBoyeson MGLinn RTMurray HMDail WG: Responses to cortical injury: I. Methodology and local effects of contusions in the rat. Brain Res 211:67771981

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20

    Gelfuso EALiberato JLCunha AOMortari MRBeleboni ROLopes NP: Parawixin2, a novel non-selective GABA uptake inhibitor from Parawixia bistriata spider venom, inhibits pentylenetetrazole-induced chemical kindling in rats. Neurosci Lett 543:12162013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21

    Hamm RJPike BRO’Dell DMLyeth BGJenkins LW: The rotarod test: an evaluation of its effectiveness in assessing motor deficits following traumatic brain injury. J Neurotrauma 11:1871961994

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22

    Hashizume KTanaka T: Multiple subpial transection in kainic acid-induced focal cortical seizure. Epilepsy Res 32:3893991998

  • 23

    Hicks SPD’Amato CJ: Motor-sensory and visual behavior after hemispherectomy in newborn and mature rats. Exp Neurol 29:4164381970

  • 24

    Hicks SPD’Amato CJ: Motor-sensory cortex-corticospinal system and developing locomotion and placing in rats. Am J Anat 143:1421975

  • 25

    Leite JPBortolotto ZACavalheiro EA: Spontaneous recurrent seizures in rats: an experimental model of partial epilepsy. Neurosci Biobehav Rev 14:5115171990

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26

    Lenz MBen Shimon MDeller TVlachos AMaggio N: Pilocarpine-induced status epilepticus is associated with changes in the actin-modulating protein synaptopodin and alterations in long-term potentiation in the mouse hippocampus. Neural Plast 2017:26525602017

    • Search Google Scholar
    • Export Citation
  • 27

    López-Alonso VCheeran BFernández-del-Olmo M: Relationship between non-invasive brain stimulation-induced plasticity and capacity for motor learning. Brain Stimul 8:120912192015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28

    Machado AGShoji ABallester GMarino R Jr: Mapping of the rat’s motor area after hemispherectomy: the hemispheres as potentially independent motor brains. Epilepsia 44:5005062003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29

    Marino R JrMachado AGTimo-Iaria C: Functional recovery after combined cerebral and cerebellar hemispherectomy in the rat. Stereotact Funct Neurosurg 76:83932001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30

    Mejia JMiranda ACDurante ACOliveira LRBarboza MRRosell KT: Preclinical molecular imaging: development of instrumentation for translational research with small laboratory animals. Einstein (Sao Paulo) 14:4084142016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31

    Merricks EMSmith EHMcKhann GMGoodman RRBateman LMEmerson RG: Single unit action potentials in humans and the effect of seizure activity. Brain 138:289129062015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32

    Morino MShimizu HOhata KTanaka KHara M: Anatomical analysis of different hemispherotomy procedures based on dissection of cadaveric brains. J Neurosurg 97:4234312002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33

    Ono TFujimura KYoshida SOno K: Suppressive effect of callosotomy on epileptic seizures is due to the blockade of enhancement of cortical reactivity by transcallosal volleys. Epilepsy Res 51:1171212002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34

    Otte WMvan der Marel Kvan Meer MPvan Rijen PCGosselaar PHBraun KP: Altered contralateral sensorimotor system organization after experimental hemispherectomy: a structural and functional connectivity study. J Cereb Blood Flow Metab 35:135813672015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35

    Paxinos GWatson C: The Rat Brain in Stereotaxic Coordinates, ed 6. London: Academic Press2007

    • Export Citation
  • 36

    Ramantani GKadish NEBrandt AStrobl KStathi AWiegand G: Seizure control and developmental trajectories after hemispherotomy for refractory epilepsy in childhood and adolescence. Epilepsia 54:104610552013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37

    Rasmussen T: Hemispherectomy for seizures revisited. Can J Neurol Sci 10:71781983

  • 38

    Ribeiro SJCiscato JG Jrde Oliveira Rde Oliveira RCd’Ângelo-Dias RCarvalho AD: Functional and ultrastructural neuroanatomy of interactive intratectal/tectonigral mesencephalic opioid inhibitory links and nigrotectal GABAergic pathways: involvement of GABAA and μ1-opioid receptors in the modulation of panic-like reactions elicited by electrical stimulation of the dorsal midbrain. J Chem Neuroanat 30:1842002005

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39

    Santos JMMacedo CEBrandão ML: GABAergic mechanisms of hypothalamic nuclei in the expression of conditioned fear. Neurobiol Learn Mem 90:5605682008

  • 40

    Save-Pédebos JPinabiaux CDorfmuller GSorbets SFDelalande OJambaqué I: The development of pragmatic skills in children after hemispherotomy: Contribution from left and right hemispheres. Epilepsy Behav 55:1391452016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41

    Shiotsuki HYoshimi KShimo YFunayama MTakamatsu YIkeda K: A rotarod test for evaluation of motor skill learning. J Neurosci Methods 189:1801852010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42

    Song MMartinowich KLee FS: BDNF at the synapse: why location matters. Mol Psychiatry 22:137013752017

  • 43

    Takahashi MVattanajun AUmeda TIsa KIsa T: Large-scale reorganization of corticofugal fibers after neonatal hemidecortication for functional restoration of forelimb movements. Eur J Neurosci 30:187818872009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44

    Tanaka THashizume KSawamura AYoshida KTsuda HHodozuka A: Basic science and epilepsy: experimental epilepsy surgery. Stereotact Funct Neurosurg 77:2392442001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45

    Umeda TFunakoshi K: Reorganization of motor circuits after neonatal hemidecortication. Neurosci Res 78:30372014

  • 46

    Umeda TIsa T: Differential contributions of rostral and caudal frontal forelimb areas to compensatory process after neonatal hemidecortication in rats. Eur J Neurosci 34:145314602011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47

    Veenman CLReiner AHonig MG: Biotinylated dextran amine as an anterograde tracer for single- and double-labeling studies. J Neurosci Methods 41:2392541992

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48

    Villemure JGMascott CR: Peri-insular hemispherotomy: surgical principles and anatomy. Neurosurgery 37:9759811995

  • 49

    Wanakhachornkrai OUmeda TIsa KTantisira MHTantisira BIsa T: Reorganization of sensory pathways after neonatal hemidecortication in rats. Neurosci Res 79:94982014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50

    Willemse RBHillebrand ARonner HEVandertop WPStam CJ: Magnetoencephalographic study of hand and foot sensorimotor organization in 325 consecutive patients evaluated for tumor or epilepsy surgery. Neuroimage Clin 10:46532015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51

    Winston KRWelch KAdler JRErba G: Cerebral hemicorticectomy for epilepsy. J Neurosurg 77:8898951992

  • 52

    Xerri CBenelhadj MHarlay F: Deficits and recovery of body stabilization during acrobatic locomotion after focal lesion to the somatosensory cortex: a kinematic analysis combined with cortical mapping. Arch Ital Biol 142:2172362004

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53

    Xiong YMahmood AChopp M: Animal models of traumatic brain injury. Nat Rev Neurosci 14:1281422013

  • 54

    Yoon YSYu KPKim HKim HIKwak SHKim BO: The effect of electric cortical stimulation after focal traumatic brain injury in rats. Ann Rehabil Med 36:5966082012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55

    Yoshikawa AAtobe YTakeda AKamiya YTakiguchi MFunakoshi K: A retrograde tracing study of compensatory corticospinal projections in rats with neonatal hemidecortication. Dev Neurosci 33:5395472011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
TrendMD
Metrics

Metrics

All Time Past Year Past 30 Days
Abstract Views 312 312 97
Full Text Views 44 44 2
PDF Downloads 38 38 1
EPUB Downloads 0 0 0
PubMed
Google Scholar