Anatomy and white matter connections of the orbitofrontal gyrus

Joshua D. Burks Departments of Neurosurgery,

Search for other papers by Joshua D. Burks in
Current site
Google Scholar
PubMed
Close
 MD
,
Andrew K. Conner Departments of Neurosurgery,

Search for other papers by Andrew K. Conner in
Current site
Google Scholar
PubMed
Close
 MD
,
Phillip A. Bonney Departments of Neurosurgery,

Search for other papers by Phillip A. Bonney in
Current site
Google Scholar
PubMed
Close
 MD
,
Chad A. Glenn Departments of Neurosurgery,

Search for other papers by Chad A. Glenn in
Current site
Google Scholar
PubMed
Close
 MD
,
Cordell M. Baker Departments of Neurosurgery,

Search for other papers by Cordell M. Baker in
Current site
Google Scholar
PubMed
Close
 BS
,
Lillian B. Boettcher Departments of Neurosurgery,

Search for other papers by Lillian B. Boettcher in
Current site
Google Scholar
PubMed
Close
 BS
,
Robert G. Briggs Departments of Neurosurgery,

Search for other papers by Robert G. Briggs in
Current site
Google Scholar
PubMed
Close
 BS
,
Daniel L. O’Donoghue Cell Biology, and

Search for other papers by Daniel L. O’Donoghue in
Current site
Google Scholar
PubMed
Close
 PhD
,
Dee H. Wu Radiological Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma

Search for other papers by Dee H. Wu in
Current site
Google Scholar
PubMed
Close
 PhD
, and
Michael E. Sughrue Departments of Neurosurgery,

Search for other papers by Michael E. Sughrue in
Current site
Google Scholar
PubMed
Close
 MD
Restricted access

Purchase Now

USD  $45.00

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $536.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $636.00
USD  $45.00
USD  $536.00
USD  $636.00
Print or Print + Online Sign in

OBJECTIVE

The orbitofrontal cortex (OFC) is understood to have a role in outcome evaluation and risk assessment and is commonly involved with infiltrative tumors. A detailed understanding of the exact location and nature of associated white matter tracts could significantly improve postoperative morbidity related to declining capacity. Through diffusion tensor imaging–based fiber tracking validated by gross anatomical dissection as ground truth, the authors have characterized these connections based on relationships to other well-known structures.

METHODS

Diffusion imaging from the Human Connectome Project for 10 healthy adult controls was used for tractography analysis. The OFC was evaluated as a whole based on connectivity with other regions. All OFC tracts were mapped in both hemispheres, and a lateralization index was calculated with resultant tract volumes. Ten postmortem dissections were then performed using a modified Klingler technique to demonstrate the location of major tracts.

RESULTS

The authors identified 3 major connections of the OFC: a bundle to the thalamus and anterior cingulate gyrus, passing inferior to the caudate and medial to the vertical fibers of the thalamic projections; a bundle to the brainstem, traveling lateral to the caudate and medial to the internal capsule; and radiations to the parietal and occipital lobes traveling with the inferior fronto-occipital fasciculus.

CONCLUSIONS

The OFC is an important center for processing visual, spatial, and emotional information. Subtle differences in executive functioning following surgery for frontal lobe tumors may be better understood in the context of the fiber-bundle anatomy highlighted by this study.

ABBREVIATIONS

DTI = diffusion tensor imaging; IFOF = inferior fronto-occipital fasciculus; LI = lateralization index; OFC = orbitofrontal cortex; OFG = orbitofrontal gyrus; ROI = region of interest; SFG = superior frontal gyrus.
  • Collapse
  • Expand
  • 1

    Abel TJ, Manzel K, Bruss J, Belfi AM, Howard MA III, Tranel D: The cognitive and behavioral effects of meningioma lesions involving the ventromedial prefrontal cortex. J Neurosurg 124:15681577, 2016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2

    Alcaraz F, Marchand AR, Vidal E, Guillou A, Faugère A, Coutureau E, et al.: flexible use of predictive cues beyond the orbitofrontal cortex: role of the submedius thalamic nucleus. J Neurosci 35:1318313193, 2015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3

    Alvarez JA, Emory E: Executive function and the frontal lobes: a meta-analytic review. Neuropsychol Rev 16:1742, 2006

  • 4

    Ardekani BA, Tabesh A, Sevy S, Robinson DG, Bilder RM, Szeszko PR: Diffusion tensor imaging reliably differentiates patients with schizophrenia from healthy volunteers. Hum Brain Mapp 32:19, 2011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5

    Barbas H: Connections underlying the synthesis of cognition, memory, and emotion in primate prefrontal cortices. Brain Res Bull 52:319330, 2000

  • 6

    Bramham J, Morris RG, Hornak J, Bullock P, Polkey CE: Social and emotional functioning following bilateral and unilateral neurosurgical prefrontal cortex lesions. J Neuropsychol 3:125143, 2009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7

    Brummelman P, Sattler MG, Meiners LC, Elderson MF, Dullaart RP, van den Berg G, et al.: Cognitive performance after postoperative pituitary radiotherapy: a dosimetric study of the hippocampus and the prefrontal cortex. Eur J Endocrinol 166:171179, 2012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8

    Burks JD, Bonney PA, Conner AK, Glenn CA, Briggs RG, Battiste JD, et al.: A method for safely resecting anterior butterfly gliomas: the surgical anatomy of the default mode network and the relevance of its preservation. J Neurosurg [epub ahead of print September 16, 2016. DOI: 10.3171/2016.5.JNS153006]

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9

    Burks JD, Conner AK, Bonney PA, Glenn CA, Smitherman AD, Ghafil CA, et al.: Frontal keyhole craniotomy for resection of low- and high-grade gliomas. Neurosurgery [epub ahead of print], 2017

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10

    Catani M, Dell’Acqua F, Vergani F, Malik F, Hodge H, Roy P, et al.: Short frontal lobe connections of the human brain. Cortex 48:273291, 2012

  • 11

    Chan RC, Shum D, Toulopoulou T, Chen EY: Assessment of executive functions: review of instruments and identification of critical issues. Arch Clin Neuropsychol 23:201216, 2008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12

    Chavis DA, Pandya DN: Further observations on corticofrontal connections in the rhesus monkey. Brain Res 117:369386, 1976

  • 13

    Colby CL, Goldberg ME: Space and attention in parietal cortex. Annu Rev Neurosci 22:319349, 1999

  • 14

    Della Libera C, Chelazzi L: Visual selective attention and the effects of monetary rewards. Psychol Sci 17:222227, 2006

  • 15

    Duffau H: The challenge to remove diffuse low-grade gliomas while preserving brain functions. Acta Neurochir (Wien) 154:569574, 2012

  • 16

    Elliott R, Dolan RJ, Frith CD: Dissociable functions in the medial and lateral orbitofrontal cortex: evidence from human neuroimaging studies. Cereb Cortex 10:308317, 2000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17

    Francis S, Rolls ET, Bowtell R, McGlone F, O’Doherty J, Browning A, et al.: The representation of pleasant touch in the brain and its relationship with taste and olfactory areas. Neuroreport 10:453459, 1999

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18

    Funahashi S: [The contribution of the orbitofrontal cortex to the preference for visual stimuli.] Brain Nerve 67:711722, 2015 (Jpn)

  • 19

    Goodkind MS, Sollberger M, Gyurak A, Rosen HJ, Rankin KP, Miller B, et al.: Tracking emotional valence: the role of the orbitofrontal cortex. Hum Brain Mapp 33:753762, 2012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20

    Gottfried JA, O’Doherty J, Dolan RJ: Encoding predictive reward value in human amygdala and orbitofrontal cortex. Science 301:11041107, 2003

  • 21

    Groenewegen HJ: Organization of the afferent connections of the mediodorsal thalamic nucleus in the rat, related to the mediodorsal-prefrontal topography. Neuroscience 24:379431, 1988

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22

    Hartmann CJ, Lujan JL, Chaturvedi A, Goodman WK, Okun MS, McIntyre CC, et al.: Tractography activation patterns in dorsolateral prefrontal cortex suggest better clinical responses in OCD DBS. Front Neurosci 9:519, 2016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23

    Hornak J, Bramham J, Rolls ET, Morris RG, O’Doherty J, Bullock PR, et al.: Changes in emotion after circumscribed surgical lesions of the orbitofrontal and cingulate cortices. Brain 126:16911712, 2003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24

    Jackson SA, Horst NK, Pears A, Robbins TW, Roberts AC: Role of the perigenual anterior cingulate and orbitofrontal cortex in contingency learning in the marmoset. Cereb Cortex 26:32733284, 2016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25

    Jarbo K, Verstynen TD: Converging structural and functional connectivity of orbitofrontal, dorsolateral prefrontal, and posterior parietal cortex in the human striatum. J Neurosci 35:38653878, 2015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26

    Jenkins LM, Andrewes DG, Nicholas CL, Drummond KJ, Moffat BA, Phal P, et al.: Social cognition in patients following surgery to the prefrontal cortex. Psychiatry Res 224:192203, 2014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27

    Jungblut M, Huber W, Mais C, Schnitker R: Paving the way for speech: voice-training-induced plasticity in chronic aphasia and apraxia of speech—three single cases. Neural Plast 2014:841982, 2014

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28

    Kawamura M, Miller MW, Ichikawa H, Ishihara K, Sugimoto A: Brodmann area 12: an historical puzzle relevant to FTLD. Neurology 76:15961599, 2011

  • 29

    Koutsarnakis C, Liakos F, Kalyvas AV, Sakas DE, Stranjalis G: A laboratory manual for stepwise cerebral white matter fiber dissection. World Neurosurg 84:483493, 2015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30

    Kringelbach ML: The human orbitofrontal cortex: linking reward to hedonic experience. Nat Rev Neurosci 6:691702, 2005

  • 31

    Kristjánsson A, Sigurjónsdóttir O, Driver J: Fortune and reversals of fortune in visual search: Reward contingencies for pop-out targets affect search efficiency and target repetition effects. Atten Percept Psychophys 72:12291236, 2010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32

    Lee J, Shomstein S: The differential effects of reward on space- and object-based attentional allocation. J Neurosci 33:1062510633, 2013

  • 33

    Lee J, Shomstein S: Reward-based transfer from bottom-up to top-down search tasks. Psychol Sci 25:466475, 2014

  • 34

    Makris N, Rathi Y, Mouradian P, Bonmassar G, Papadimitriou G, Ing WI, et al.: Variability and anatomical specificity of the orbitofrontothalamic fibers of passage in the ventral capsule/ventral striatum (VC/VS): precision care for patient-specific tractography-guided targeting of deep brain stimulation (DBS) in obsessive compulsive disorder (OCD). Brain Imaging Behav 10:10541067, 2016

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35

    Martino J, De Witt Hamer PC, Vergani F, Brogna C, de Lucas EM, Vázquez-Barquero A, et al.: Cortex-sparing fiber dissection: an improved method for the study of white matter anatomy in the human brain. J Anat 219:531541, 2011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36

    Navalpakkam V, Koch C, Rangel A, Perona P: Optimal reward harvesting in complex perceptual environments. Proc Natl Acad Sci U S A 107:52325237, 2010

  • 37

    Nelson JK, Reuter-Lorenz PA, Persson J, Sylvester CY, Jonides J: Mapping interference resolution across task domains: a shared control process in left inferior frontal gyrus. Brain Res 1256:92100, 2009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38

    Ohtani T, Bouix S, Hosokawa T, Saito Y, Eckbo R, Ballinger T, et al.: Abnormalities in white matter connections between orbitofrontal cortex and anterior cingulate cortex and their associations with negative symptoms in schizophrenia: a DTI study. Schizophr Res 157:190197, 2014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39

    Oyoshi T, Nishijo H, Asakura T, Takamura Y, Ono T: Emotional and behavioral correlates of mediodorsal thalamic neurons during associative learning in rats. J Neurosci 16:58125829, 1996

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40

    Ozyurt J, Lorenzen A, Gebhardt U, Warmuth-Metz M, Müller HL, Thiel CM: Remote effects of hypothalamic lesions in the prefrontal cortex of craniopharygioma patients. Neurobiol Learn Mem 111:7180, 2014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41

    Pepper J, Hariz M, Zrinzo L: Deep brain stimulation versus anterior capsulotomy for obsessive-compulsive disorder: a review of the literature. J Neurosurg 122:10281037, 2015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42

    Ribas GC: The cerebral sulci and gyri. Neurosurg Focus 28(2):E2, 2010

  • 43

    Rodrigues TP, Rodrigues MA, de Araújo Paz D, Silva da Costa MD, Centeno RS, Chaddad Neto FE, et al.: Orbitofrontal sulcal and gyrus pattern in human: an anatomical study. Arq Neuropsiquiatr 73:431435, 2015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44

    Sengupta R, Nasir SM: The predictive roles of neural oscillations in speech motor adaptability. J Neurophysiol 115:25192528, 2016

  • 45

    Shomstein S, Kravitz DJ, Behrmann M: Attentional control: temporal relationships within the fronto-parietal network. Neuropsychologia 50:12021210, 2012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46

    Solbakk AK, Løvstad M: Effects of focal prefrontal cortex lesions on electrophysiological indices of executive attention and action control. Scand J Psychol 55:233243, 2014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47

    Stroop JR: Studies of interference in serial verbal reactions. J Exp Psychol 18:643662, 1935

  • 48

    Szatkowska I, Szymańska O, Bojarski P, Grabowska A: Cognitive inhibition in patients with medial orbitofrontal damage. Exp Brain Res 181:109115, 2007

  • 49

    Szatkowska I, Szymańska O, Marchewka A, Soluch P, Rymarczyk K: Dissociable contributions of the left and right posterior medial orbitofrontal cortex in motivational control of goal-directed behavior. Neurobiol Learn Mem 96:385391, 2011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50

    Thiebaut de Schotten M, Dell’Acqua F, Forkel SJ, Simmons A, Vergani F, Murphy DG, et al.: A lateralized brain network for visuospatial attention. Nat Neurosci 14:12451246, 2011

  • 51

    Trebuchon A, Bartolomei F, McGonigal A, Laguitton V, Chauvel P: Reversible antisocial behavior in ventromedial prefrontal lobe epilepsy. Epilepsy Behav 29:367373, 2013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52

    Wager M, Du Boisgueheneuc F, Pluchon C, Bouyer C, Stal V, Bataille B, et al.: Intraoperative monitoring of an aspect of executive functions: administration of the Stroop test in 9 adult patients during awake surgery for resection of frontal glioma. Neurosurgery 72 (2 Suppl Operative):ons169ons181, 2013

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53

    Wagner G, De la Cruz F, Schachtzabel C, Güllmar D, Schultz CC, Schlösser RG, et al.: Structural and functional dysconnectivity of the fronto-thalamic system in schizophrenia: a DCM-DTI study. Cortex 66:3545, 2015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54

    Wolf RC, Philippi CL, Motzkin JC, Baskaya MK, Koenigs M: Ventromedial prefrontal cortex mediates visual attention during facial emotion recognition. Brain 137:17721780, 2014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55

    Wu JS, Zhou LF, Tang WJ, Mao Y, Hu J, Song YY, et al.: Clinical evaluation and follow-up outcome of diffusion tensor imaging-based functional neuronavigation: a prospective, controlled study in patients with gliomas involving pyramidal tracts. Neurosurgery 61:935949, 2007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56

    Yan C, Su L, Wang Y, Xu T, Yin DZ, Fan MX, et al.: Multivariate neural representations of value during reward anticipation and consummation in the human orbitofrontal cortex. Sci Rep 6:29079, 2016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57

    Yang JC, Papadimitriou G, Eckbo R, Yeterian EH, Liang L, Dougherty DD, et al.: Multi-tensor investigation of orbitofrontal cortex tracts affected in subcaudate tractotomy. Brain Imaging Behav 9:342352, 2015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58

    Yeh FC, Wedeen VJ, Tseng WY: Generalized q-sampling imaging. IEEE Trans Med Imaging 29:16261635, 2010

Metrics

All Time Past Year Past 30 Days
Abstract Views 1786 974 314
Full Text Views 3995 306 5
PDF Downloads 2769 267 11
EPUB Downloads 0 0 0