Combination therapy in a xenograft model of glioblastoma: enhancement of the antitumor activity of temozolomide by an MDM2 antagonist

Restricted access

OBJECTIVE

Improvement in treatment outcome for patients with glioblastoma multiforme (GBM) requires a multifaceted approach due to dysregulation of numerous signaling pathways. The murine double minute 2 (MDM2) protein may fulfill this requirement because it is involved in the regulation of growth, survival, and invasion. The objective of this study was to investigate the impact of modulating MDM2 function in combination with front-line temozolomide (TMZ) therapy in GBM.

METHODS

The combination of TMZ with the MDM2 protein–protein interaction inhibitor nutlin3a was evaluated for effects on cell growth, p53 pathway activation, expression of DNA repair proteins, and invasive properties. In vivo efficacy was assessed in xenograft models of human GBM.

RESULTS

In combination, TMZ/nutlin3a was additive to synergistic in decreasing growth of wild-type p53 GBM cells. Pharmacodynamic studies demonstrated that inhibition of cell growth following exposure to TMZ/nutlin3a correlated with: 1) activation of the p53 pathway, 2) downregulation of DNA repair proteins, 3) persistence of DNA damage, and 4) decreased invasion. Pharmacokinetic studies indicated that nutlin3a was detected in human intracranial tumor xenografts. To assess therapeutic potential, efficacy studies were conducted in a xenograft model of intracranial GBM by using GBM cells derived from a recurrent wild-type p53 GBM that is highly TMZ resistant (GBM10). Three 5-day cycles of TMZ/nutlin3a resulted in a significant increase in the survival of mice with GBM10 intracranial tumors compared with single-agent therapy.

CONCLUSIONS

Modulation of MDM2/p53-associated signaling pathways is a novel approach for decreasing TMZ resistance in GBM. To the authors' knowledge, this is the first study in a humanized intracranial patient-derived xenograft model to demonstrate the efficacy of combining front-line TMZ therapy and an inhibitor of MDM2 protein–protein interactions.

ABBREVIATIONSAPE1 = apurinic/apyrimidinic endonuclease I; ATM = ataxia-telangiectasia mutated; BER = base excision repair; BSA = bovine serum albumin; FBS = fetal bovine serum; GAPDH = glyceraldehyde-3-phosphate-dehydrogenase; GBM = glioblastoma; IUSCC, IUSM = Indiana University Simon Cancer Center, Indiana University School of Medicine; MDM2 = murine double minute 2; MGMT = O6-methylguanine DNA methyltransferase; MS = mass spectroscopy; NSG = NOD.Cg-PrkdcscidIL2rgtm1Wjl/Sz; PBS = phosphate-buffered saline; PK = pharmacokinetic; PPI = protein–protein interaction; S15 = phosphorylation on serine 15-p53; TBS = Tris-buffered saline; TBST = TBS and Tween 20; TMZ = temozolomide; T/N = combination of TMZ and nutlin3a.
Article Information

Contributor Notes

INCLUDE WHEN CITING Published online May 13, 2016; DOI: 10.3171/2016.1.JNS152513.

Drs. Wang and S. Cai contributed equally to this work.

Correspondence Karen E. Pollok, Departments of Pediatrics and Pharmacology and Toxicology, Herman B. Wells Center for Pediatric Research, 1044 W Walnut St., R4-302, Indianapolis, IN 46202-5525. email: kpollok@iu.edu.

© AANS, except where prohibited by US copyright law.

Headings
References
  • 1

    Alt JRBouska AFernandez MRCerny RLXiao HEischen CM: Mdm2 binds to Nbs1 at sites of DNA damage and regulates double strand break repair. J Biol Chem 280:18771187812005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2

    Ambrosini GSambol EBCarvajal DVassilev LTSinger SSchwartz GK: Mouse double minute antagonist Nutlin-3a enhances chemotherapy-induced apoptosis in cancer cells with mutant p53 by activating E2F1. Oncogene 26:347334812007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3

    Andreeff MKelly KRYee KAssouline SStrair RPopplewell L: Results of the Phase I trial of RG7112, a small-molecule MDM2 antagonist in leukemia. Clin Cancer Res 22:8688762016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4

    Bijangi-Vishehsaraei KSaadatzadeh MRHuang SMurphy MPSafa AR: 4-(4-Chloro-2-methylphenoxy)-N-hydroxybutanamide (CMH) targets mRNA of the c-FLIP variants and induces apoptosis in MCF-7 human breast cancer cells. Mol Cell Biochem 342:1331422010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5

    Bocangel DSengupta SMitra SBhakat KK: p53-Mediated down-regulation of the human DNA repair gene O6-methylguanine-DNA methyltransferase (MGMT) via interaction with Sp1 transcription factor. Anticancer Res 29:374137502009

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6

    Busso CSIwakuma TIzumi T: Ubiquitination of mammalian AP endonuclease (APE1) regulated by the p53-MDM2 signaling pathway. Oncogene 28:161616252009

  • 7

    Cai SWang HBailey BErnstberger AJuliar BESinn AL: Humanized bone marrow mouse model as a preclinical tool to assess therapy-mediated hematotoxicity. Clin Cancer Res 17:219522062011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8

    Cancer Genome Atlas Research Network: Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455:106110682008

  • 9

    Carlson BLPokorny JLSchroeder MASarkaria JN: Establishment, maintenance and in vitro and in vivo applications of primary human glioblastoma multiforme (GBM) xenograft models for translational biology studies and drug discovery. Curr Protoc Pharmacol Chapter 14:Unit 14.162011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10

    Chen J: The roles of MDM2 and MDMX phosphorylation in stress signaling to p53. Genes Cancer 3:2742822012

  • 11

    Cheng QChen J: The phenotype of MDM2 auto-degradation after DNA damage is due to epitope masking by phosphorylation. Cell Cycle 10:116211662011

  • 12

    Chou TCTalalay P: Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 22:27551984

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13

    Costa BBendinelli SGabelloni PDa Pozzo EDaniele SScatena F: Human glioblastoma multiforme: p53 reactivation by a novel MDM2 inhibitor. PLoS One 8:e722812013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14

    Ding QZhang ZLiu JJJiang NZhang JRoss TM: Discovery of RG7388, a potent and selective p53-MDM2 inhibitor in clinical development. J Med Chem 56:597959832013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15

    Erickson-Miller CLMay RDTomaszewski JOsborn BMurphy MJPage JG: Differential toxicity of camptothecin, topotecan and 9-aminocamptothecin to human, canine, and murine myeloid progenitors (CFU-GM) in vitro. Cancer Chemother Pharmacol 39:4674721997

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16

    Higgins BGlenn KWalz ATovar CFilipovic ZHussain S: Preclinical optimization of MDM2 antagonist scheduling for cancer treatment by using a model-based approach. Clin Cancer Res 20:374237522014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17

    Huang BDeo DXia MVassilev LT: Pharmacologic p53 activation blocks cell cycle progression but fails to induce senescence in epithelial cancer cells. Mol Cancer Res 7:149715092009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18

    Iancu-Rubin CMosoyan GGlenn KGordon RENichols GLHoffman R: Activation of p53 by the MDM2 inhibitor RG7112 impairs thrombopoiesis. Exp Hematol 42:137145145.e1145.e52014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19

    Jiang MPabla NMurphy RFYang TYin XMDegenhardt K: Nutlin-3 protects kidney cells during cisplatin therapy by suppressing Bax/Bak activation. J Biol Chem 282:263626452007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20

    Kanu OOHughes BDi CLin NFu JBigner DD: Glioblastoma multiforme oncogenomics and signaling pathways. Clin Med Oncol 3:39522009

  • 21

    LaRusch GAJackson MWDunbar JDWarren RSDonner DBMayo LD: Nutlin3 blocks vascular endothelial growth factor induction by preventing the interaction between hypoxia inducible factor 1α and Hdm2. Cancer Res 67:4504542007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22

    Lau LMNugent JKZhao XIrwin MS: HDM2 antagonist Nutlin-3 disrupts p73-HDM2 binding and enhances p73 function. Oncogene 27:99710032008

  • 23

    Lehman JAMayo LD: Integration of DNA damage and repair with murine double-minute 2 (Mdm2) in tumorigenesis. Int J Mol Sci 13:16373163862012

  • 24

    Maya RBalass MKim STShkedy DLeal JFShifman O: ATM-dependent phosphorylation of Mdm2 on serine 395: role in p53 activation by DNA damage. Genes Dev 15:106710772001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25

    Moran DMMaki CG: Nutlin-3a induces cytoskeletal rearrangement and inhibits the migration and invasion capacity of p53 wild-type cancer cells. Mol Cancer Ther 9:8959052010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26

    Nag SQin JSrivenugopal KSWang MZhang R: The MDM2-p53 pathway revisited. J Biomed Res 27:2542712013

  • 27

    Parsons DWJones SZhang XLin JCLeary RJAngenendt P: An integrated genomic analysis of human glioblastoma multiforme. Science 321:180718122008

  • 28

    Ray-Coquard IBlay JYItaliano ALe Cesne APenel NZhi J: Effect of the MDM2 antagonist RG7112 on the P53 pathway in patients with MDM2-amplified, well-differentiated or dedifferentiated liposarcoma: an exploratory proof-of-mechanism study. Lancet Oncol 13:113311402012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29

    Rayburn EZhang RHe JWang H: MDM2 and human malignancies: expression, clinical pathology, prognostic markers, and implications for chemotherapy. Curr Cancer Drug Targets 5:27412005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30

    Rudek MADonehower RCStatkevich PBatra VKCutler DLBaker SD: Temozolomide in patients with advanced cancer: phase I and pharmacokinetic study. Pharmacotherapy 24:16252004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31

    Sarkaria JNCarlson BLSchroeder MAGrogan PBrown PDGiannini C: Use of an orthotopic xenograft model for assessing the effect of epidermal growth factor receptor amplification on glioblastoma radiation response. Clin Cancer Res 12:226422712006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32

    Sarkaria JNKitange GJJames CDPlummer RCalvert HWeller M: Mechanisms of chemoresistance to alkylating agents in malignant glioma. Clin Cancer Res 14:290029082008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33

    Schneekloth ARPucheault MTae HSCrews CM: Targeted intracellular protein degradation induced by a small molecule: En route to chemical proteomics. Bioorg Med Chem Lett 18:590459082008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34

    Secchiero PCorallini FGonelli ADell'Eva RVitale MCapitani S: Antiangiogenic activity of the MDM2 antagonist nutlin-3. Circ Res 100:61692007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35

    Shangary SQin DMcEachern DLiu MMiller RSQiu S: Temporal activation of p53 by a specific MDM2 inhibitor is selectively toxic to tumors and leads to complete tumor growth inhibition. Proc Natl Acad Sci U S A 105:393339382008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36

    Shinozaki TNota ATaya YOkamoto K: Functional role of Mdm2 phosphorylation by ATR in attenuation of p53 nuclear export. Oncogene 22:887088802003

  • 37

    Sionov RVCoen SGoldberg ZBerger MBercovich BBen-Neriah Y: c-Abl regulates p53 levels under normal and stress conditions by preventing its nuclear export and ubiquitination. Mol Cell Biol 21:586958782001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38

    Sottoriva ASpiteri IPiccirillo SGTouloumis ACollins VPMarioni JC: Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proc Natl Acad Sci U S A 110:400940142013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39

    Stupp RMason WPvan den Bent MJWeller MFisher BTaphoorn MJ: Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:9879962005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40

    Supiot SHill RPBristow RG: Nutlin-3 radiosensitizes hypoxic prostate cancer cells independent of p53. Mol Cancer Ther 7:9939992008

  • 41

    Tallarida RJ: Quantitative methods for assessing drug synergism. Genes Cancer 2:100310082011

  • 42

    Taylor JWSchiff D: Treatment considerations for MGMT-unmethylated glioblastoma. Curr Neurol Neurosci Rep 15:5072015

  • 43

    Tonsing-Carter EBailey BJSaadatzadeh MRDing JWang HSinn AL: Potentiation of carboplatin-mediated DNA damage by the Mdm2 modulator Nutlin-3a in a humanized orthotopic breast-to-lung metastatic model. Mol Cancer Ther 14:285028632015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44

    Tovar CGraves BPackman KFilipovic ZHiggins BXia M: MDM2 small-molecule antagonist RG7112 activates p53 signaling and regresses human tumors in preclinical cancer models. Cancer Res 73:258725972013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45

    Vassilev LTVu BTGraves BCarvajal DPodlaski FFilipovic Z: In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303:8448482004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46

    Verreault MSchmitt CGoldwirt LPelton KHaidar SLevasseur C: Preclinical efficacy of the MDM2 inhibitor RG7112 in MDM2 amplified and TP53 wild-type glioblastomas. Clin Cancer Res 22:118511962016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47

    Waning DLLehman JABatuello CNMayo LD: c-Abl phosphorylation of Mdm2 facilitates Mdm2-Mdmx complex formation. J Biol Chem 286:2162222011

  • 48

    Woodworth GFDunn GPNance EAHanes JBrem H: Emerging insights into barriers to effective brain tumor therapeutics. Front Oncol 4:1262014

  • 49

    Yoshimoto KMizoguchi MHata NMurata HHatae RAmano T: Complex DNA repair pathways as possible therapeutic targets to overcome temozolomide resistance in glioblastoma. Front Oncol 2:1862012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50

    Zaky ABusso CIzumi TChattopadhyay RBassiouny AMitra S: Regulation of the human AP-endonuclease (APE1/Ref-1) expression by the tumor suppressor p53 in response to DNA damage. Nucleic Acids Res 36:155515662008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51

    Zhang FTagen MThrom SMallari JMiller LGuy RK: Whole-body physiologically based pharmacokinetic model for nutlin-3a in mice after intravenous and oral administration. Drug Metab Dispos 39:15212011. 4 hours

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
TrendMD
Metrics

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 808 626 23
PDF Downloads 375 263 6
EPUB Downloads 0 0 0
PubMed
Google Scholar