Magnetic resonance imaging of the subthalamic nucleus for deep brain stimulation

Restricted access

The subthalamic nucleus (STN) is one of the most important stereotactic targets in neurosurgery, and its accurate imaging is crucial. With improving MRI sequences there is impetus for direct targeting of the STN. High-quality, distortion-free images are paramount. Image reconstruction techniques appear to show the greatest promise in balancing the issue of geometrical distortion and STN edge detection. Existing spin echo- and susceptibility-based MRI sequences are compared with new image reconstruction methods. Quantitative susceptibility mapping is the most promising technique for stereotactic imaging of the STN.

ABBREVIATIONSCNR = contrast-to-noise ratio; DBS = deep brain stimulation; DTI = diffusion tensor imaging; FA = fractional anisotropy; FGATIR = fast gray matter acquisition T1 IR; FLAIR = fluid attenuated IR; FLASH = fast low-angle shot; FSE = fast spin echo; GRE = gradient echo; IR = inversion recovery; NSA = number of signal averages; PSIR = phase-sensitive IR; QSM = quantitative susceptibility mapping; SE = spin echo; SN = substantia nigra; SNR = signal-to-noise ratio; STIR = short tau IR; STN = subthalamic nucleus; SWI = susceptibility-weighted imaging; SWPI = susceptibility-weighted phase imaging; T = tesla; T2WI = T2-weighted imaging; T2*WI = T2-weighted magnitude imaging; TI = inversion time; TR = relaxation time; ZI = zona incerta.
Article Information

Contributor Notes

Correspondence Christopher Lind, Neurosurgical Service of Western Australia, 1st Fl., G Block, Sir Charles Gairdner Hospital, Nedlands, Perth, WA 6009, Australia. email: christopher.lind@health.gov.wa.au.INCLUDE WHEN CITING Published online August 21, 2015; DOI: 10.3171/2015.1.JNS142066.Disclosure The authors report no conflict of interest concerning the materials or methods used in this study or the findings specified in this paper.

© AANS, except where prohibited by US copyright law.

Headings
References
  • 1

    Abosch AYacoub EUgurbil KHarel N: An assessment of current brain targets for deep brain stimulation surgery with susceptibility-weighted imaging at 7 tesla. Neurosurgery 67:174517562010

    • Search Google Scholar
    • Export Citation
  • 2

    Andrade-Souza YMSchwalb JMHamani CEltahawy HHoque TSaint-Cyr J: Comparison of three methods of targeting the subthalamic nucleus for chronic stimulation in Parkinson’s disease. Neurosurgery 56:2 Suppl3603682005

    • Search Google Scholar
    • Export Citation
  • 3

    Ashkan KBlomstedt PZrinzo LTisch SYousry TLimousin-Dowsey P: Variability of the subthalamic nucleus: the case for direct MRI guided targeting. Br J Neurosurg 21:1972002007

    • Search Google Scholar
    • Export Citation
  • 4

    Barkhoudarian GKlochkov TSedrak MFrew AGorgulho ABehnke E: A role of diffusion tensor imaging in movement disorder surgery. Acta Neurochir (Wien) 152:208920952010

    • Search Google Scholar
    • Export Citation
  • 5

    Basser PJPajevic SPierpaoli CDuda JAldroubi A: In vivo fiber tractography using DT-MRI data. Magn Reson Med 44:6256322000

  • 6

    Bejjani BPDormont DPidoux BYelnik JDamier PArnulf I: Bilateral subthalamic stimulation for Parkinson’s disease by using three-dimensional stereotactic magnetic resonance imaging and electrophysiological guidance. J Neurosurg 92:6156252000

    • Search Google Scholar
    • Export Citation
  • 7

    Ben-Haim SAsaad WFGale JTEskandar EN: Risk factors for hemorrhage during microelectrode-guided deep brain stimulation and the introduction of an improved microelectrode design. Neurosurgery 64:7547632009

    • Search Google Scholar
    • Export Citation
  • 8

    Brass SDChen NKMulkern RVBakshi R: Magnetic resonance imaging of iron deposition in neurological disorders. Top Magn Reson Imaging 17:31402006

    • Search Google Scholar
    • Export Citation
  • 9

    Brunenberg EJPlatel BHofman PATer Haar Romeny BMVisser-Vandewalle V: Magnetic resonance imaging techniques for visualization of the subthalamic nucleus. J Neurosurg 115:9719842011

    • Search Google Scholar
    • Export Citation
  • 10

    Chavhan GBBabyn PSThomas BShroff MMHaacke EM: Principles, techniques, and applications of T2*-based MR imaging and its special applications. Radiographics 29:143314492009

    • Search Google Scholar
    • Export Citation
  • 11

    Cheng CHHuang HMLin HLChiou SM: 1.5T versus 3T MRI for targeting subthalamic nucleus for deep brain stimulation. Br J Neurosurg 28:4674702014

    • Search Google Scholar
    • Export Citation
  • 12

    Danish SFJaggi JLMoyer JTFinkel LBaltuch GH: Conventional MRI is inadequate to delineate the relationship between the red nucleus and subthalamic nucleus in Parkinson’s disease. Stereotact Funct Neurosurg 84:12182006

    • Search Google Scholar
    • Export Citation
  • 13

    de Rochefort LLiu TKressler BLiu JSpincemaille PLebon V: Quantitative susceptibility map reconstruction from MR phase data using bayesian regularization: validation and application to brain imaging. Magn Reson Med 63:1942062010

    • Search Google Scholar
    • Export Citation
  • 14

    Dormont DRicciardi KGTandé DParain KMenuel CGalanaud D: Is the subthalamic nucleus hypointense on T2-weighted images? A correlation study using MR imaging and stereotactic atlas data. AJNR Am J Neuroradiol 25:151615232004

    • Search Google Scholar
    • Export Citation
  • 15

    Elmaoğlu MÇelik A: MRI Handbook: MR Physics Patient Positioning and Protocols New YorkSpringer2012

  • 16

    Frahm JHaase AMatthaei D: Rapid NMR imaging of dynamic processes using the FLASH technique. Magn Reson Med 3:3213271986

  • 17

    Gasparotti RPinelli LLiserre R: New MR sequences in daily practice: susceptibility weighted imaging. A pictorial essay Insights Imaging 2:3353472011

    • Search Google Scholar
    • Export Citation
  • 18

    Guehl DEdwards RCuny EBurbaud PRougier AModolo J: Statistical determination of the optimal subthalamic nucleus stimulation site in patients with Parkinson disease. J Neurosurg 106:1011102007

    • Search Google Scholar
    • Export Citation
  • 19

    Gutman DAHoltzheimer PEBehrens TEJohansen-Berg HMayberg HS: A tractography analysis of two deep brain stimulation white matter targets for depression. Biol Psychiatry 65:2762822009

    • Search Google Scholar
    • Export Citation
  • 20

    Haacke EMXu YCheng YCReichenbach JR: Susceptibility weighted imaging (SWI). Magn Reson Med 52:6126182004

  • 21

    Ishimori TNakano SMori YSeo RTogami TMasada T: Preoperative identification of subthalamic nucleus for deep brain stimulation using three-dimensional phase sensitive inversion recovery technique. Magn Reson Med Sci 6:2252292007

    • Search Google Scholar
    • Export Citation
  • 22

    Kerl HUGerigk LPechlivanis IAl-Zghloul MGroden CNölte I: The subthalamic nucleus at 3.0 Tesla: choice of optimal sequence and orientation for deep brain stimulation using a standard installation protocol: clinical article. J Neurosurg 117:115511652012

    • Search Google Scholar
    • Export Citation
  • 23

    Kerl HUGerigk LPechlivanis IAl-Zghloul MGroden CNölte IS: The subthalamic nucleus at 7.0 Tesla: evaluation of sequence and orientation for deep-brain stimulation. Acta Neurochir (Wien) 154:205120622012

    • Search Google Scholar
    • Export Citation
  • 24

    Kitajima MKorogi YKakeda SMoriya JOhnari NSato T: Human subthalamic nucleus: evaluation with high-resolution MR imaging at 3.0 T. Neuroradiology 50:6756812008

    • Search Google Scholar
    • Export Citation
  • 25

    Konrad PENeimat JSYu HKao CCRemple MSD’Haese PF: Customized, miniature rapid-prototype stereotactic frames for use in deep brain stimulator surgery: initial clinical methodology and experience from 263 patients from 2002 to 2008. Stereotact Funct Neurosurg 89:34412011

    • Search Google Scholar
    • Export Citation
  • 26

    Langkammer CSchweser FKrebs NDeistung AGoessler WScheurer E: Quantitative susceptibility mapping (QSM) as a means to measure brain iron? A post mortem validation study. Neuroimage 62:159315992012

    • Search Google Scholar
    • Export Citation
  • 27

    Li JChang SLiu TWang QCui DChen X: Reducing the object orientation dependence of susceptibility effects in gradient echo MRI through quantitative susceptibility mapping. Magn Reson Med 68:156315692012

    • Search Google Scholar
    • Export Citation
  • 28

    Littlechild PVarma TREldridge PRFox SForster AFletcher N: Variability in position of the subthalamic nucleus targeted by magnetic resonance imaging and microelectrode recordings as compared to atlas co-ordinates. Stereotact Funct Neurosurg 80:82872003

    • Search Google Scholar
    • Export Citation
  • 29

    Liu TEskreis-Winkler SSchweitzer ADChen WKaplitt MGTsiouris AJ: Improved subthalamic nucleus depiction with quantitative susceptibility mapping. Radiology 269:2162232013

    • Search Google Scholar
    • Export Citation
  • 30

    Lu HNagae-Poetscher LMGolay XLin DPomper Mvan Zijl PC: Routine clinical brain MRI sequences for use at 3.0 Tesla. J Magn Reson Imaging 22:13222005

    • Search Google Scholar
    • Export Citation
  • 31

    Mallet LSchüpbach MN’Diaye KRemy PBardinet ECzernecki V: Stimulation of subterritories of the subthalamic nucleus reveals its role in the integration of the emotional and motor aspects of behavior. Proc Natl Acad Sci U S A 104:10661106662007

    • Search Google Scholar
    • Export Citation
  • 32

    Manova ESHabib CABoikov ASAyaz MKhan AKirsch WM: Characterizing the mesencephalon using susceptibility-weighted imaging. AJNR Am J Neuroradiol 30:5695742009

    • Search Google Scholar
    • Export Citation
  • 33

    Massey LAMiranda MAZrinzo LAl-Helli OParkes HGThornton JS: High resolution MR anatomy of the subthalamic nucleus: imaging at 9.4 T with histological validation. Neuroimage 59:203520442012

    • Search Google Scholar
    • Export Citation
  • 34

    Menuel CGarnero LBardinet EPoupon FPhalippou DDormont D: Characterization and correction of distortions in stereotactic magnetic resonance imaging for bilateral subthalamic stimulation in Parkinson disease. J Neurosurg 103:2562662005

    • Search Google Scholar
    • Export Citation
  • 35

    Mori SCrain BJChacko VPvan Zijl PC: Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 45:2652691999

    • Search Google Scholar
    • Export Citation
  • 36

    O’Gorman RLShmueli KAshkan KSamuel MLythgoe DJShahidiani A: Optimal MRI methods for direct stereotactic targeting of the subthalamic nucleus and globus pallidus. Eur Radiol 21:1301362011

    • Search Google Scholar
    • Export Citation
  • 37

    Patil PGConrad ECAldridge JWChenevert TLChou KL: The anatomical and electrophysiological subthalamic nucleus visualized by 3-T magnetic resonance imaging. Neurosurgery 71:108910952012

    • Search Google Scholar
    • Export Citation
  • 38

    Plaha PBen-Shlomo YPatel NKGill SS: Stimulation of the caudal zona incerta is superior to stimulation of the subthalamic nucleus in improving contralateral parkinsonism. Brain 129:173217472006

    • Search Google Scholar
    • Export Citation
  • 39

    Poupon CClark CAFrouin VRégis JBloch ILe Bihan D: Regularization of diffusion-based direction maps for the tracking of brain white matter fascicles. Neuroimage 12:1841952000

    • Search Google Scholar
    • Export Citation
  • 40

    Rauscher ASedlacik JBarth MHaacke EMReichenbach JR: Noninvasive assessment of vascular architecture and function during modulated blood oxygenation using susceptibility weighted magnetic resonance imaging. Magn Reson Med 54:87952005

    • Search Google Scholar
    • Export Citation
  • 41

    Sarkar SNSarkar PRPapavassiliou E: Subthalamic nuclear tissue contrast in inversion recovery MRI decreases with age in medically refractory Parkinson’s disease. J Neuroimaging 25:3033062015

    • Search Google Scholar
    • Export Citation
  • 42

    Schäfer AForstmann BUNeumann JWharton SMietke ABowtell R: Direct visualization of the subthalamic nucleus and its iron distribution using high-resolution susceptibility mapping. Hum Brain Mapp 33:283128422012

    • Search Google Scholar
    • Export Citation
  • 43

    Schaltenbrand GWahren WHassler R: Atlas for Stereotaxy of the Human Brain 2StuttgartThieme1977

  • 44

    Schweser FDeistung ALehr BWReichenbach JR: Differentiation between diamagnetic and paramagnetic cerebral lesions based on magnetic susceptibility mapping. Med Phys 37:516551782010

    • Search Google Scholar
    • Export Citation
  • 45

    Schweser FDeistung ASommer KReichenbach JR: Toward online reconstruction of quantitative susceptibility maps: superfast dipole inversion. Magn Reson Med 69:158215942013

    • Search Google Scholar
    • Export Citation
  • 46

    Sedrak MGorgulho ABari ABehnke EFrew AGevorky-an I: Diffusion tensor imaging (DTI) and colored fractional anisotropy (FA) mapping of the subthalamic nucleus (STN) and the globus pallidus interna (GPi). Acta Neurochir (Wien) 152:207920842010

    • Search Google Scholar
    • Export Citation
  • 47

    Sedrak MGorgulho ADe Salles AFFrew ABehnke EIshida W: The role of modern imaging modalities on deep brain stimulation targeting for mental illness. Acta Neurochir Suppl 101:372008

    • Search Google Scholar
    • Export Citation
  • 48

    Shields DCGorgulho ABehnke EMalkasian DDeSalles AA: Contralateral conjugate eye deviation during deep brain stimulation of the subthalamic nucleus. J Neurosurg 107:37422007

    • Search Google Scholar
    • Export Citation
  • 49

    Shmueli Kde Zwart JAvan Gelderen PLi TQDodd SJDuyn JH: Magnetic susceptibility mapping of brain tissue in vivo using MRI phase data. Magn Reson Med 62:151015222009

    • Search Google Scholar
    • Export Citation
  • 50

    Simon SLDouglas PBaltuch GHJaggi JL: Error analysis of MRI and Leksell stereotactic frame target localization in deep brain stimulation surgery. Stereotact Funct Neurosurg 83:152005

    • Search Google Scholar
    • Export Citation
  • 51

    Starr PAChristine CWTheodosopoulos PVLindsey NByrd DMosley A: Implantation of deep brain stimulators into the subthalamic nucleus: technical approach and magnetic resonance imaging-verifled lead locations. J Neurosurg 97:3703872002

    • Search Google Scholar
    • Export Citation
  • 52

    Starr PAVitek JLDeLong MBakay RA: Magnetic resonance imaging-based stereotactic localization of the globus pallidus and subthalamic nucleus. Neurosurgery 44:3033141999

    • Search Google Scholar
    • Export Citation
  • 53

    Sudhyadhom AHaq IUFoote KDOkun MSBova FJ: A high resolution and high contrast MRI for differentiation of subcortical structures for DBS targeting: the Fast Gray Matter Acquisition T1 Inversion Recovery (FGATIR). Neuroimage 47:Suppl 2T44T522009

    • Search Google Scholar
    • Export Citation
  • 54

    Thani NBBala ALind CR: Accuracy of magnetic resonance imaging-directed frame-based stereotaxis. Neurosurgery 70:1 Suppl Operative1141242012

    • Search Google Scholar
    • Export Citation
  • 55

    Thani NBBala ASwann GBLind CR: Accuracy of postoperative computed tomography and magnetic resonance image fusion for assessing deep brain stimulation electrodes. Neurosurgery 69:2072142011

    • Search Google Scholar
    • Export Citation
  • 56

    Tsai STLin SHLin SZChen JYLee CWChen SY: Neuropsychological effects after chronic subthalamic stimulation and the topography of the nucleus in Parkinson’s disease. Neurosurgery 61:E102410302007

    • Search Google Scholar
    • Export Citation
  • 57

    Vertinsky ATCoenen VALang DJKolind SHoney CRLi D: Localization of the subthalamic nucleus: optimization with susceptibility-weighted phase MR imaging. AJNR Am J Neuroradiol 30:171717242009

    • Search Google Scholar
    • Export Citation
  • 58

    Wu BLi WGuidon ALiu C: Whole brain susceptibility mapping using compressed sensing. Magn Reson Med 67:1371472012

  • 59

    Zonenshayn MRezai ARMogilner AYBeric ASterio DKelly PJ: Comparison of anatomic and neurophysiological methods for subthalamic nucleus targeting. Neurosurgery 47:2822942000

    • Search Google Scholar
    • Export Citation
TrendMD
Cited By
Metrics

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 852 730 43
PDF Downloads 674 560 20
EPUB Downloads 0 0 0
PubMed
Google Scholar