Magnetic resonance imaging of the subthalamic nucleus for deep brain stimulation

View More View Less
  • 1 Departments of Neurosurgery and
  • 2 Radiology, Sir Charles Gairdner Hospital, and
  • 3 School of Surgery, University of Western Australia, Perth, Western Australia, Australia
Restricted access

Purchase Now

USD  $45.00

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $505.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $600.00
Print or Print + Online

The subthalamic nucleus (STN) is one of the most important stereotactic targets in neurosurgery, and its accurate imaging is crucial. With improving MRI sequences there is impetus for direct targeting of the STN. High-quality, distortion-free images are paramount. Image reconstruction techniques appear to show the greatest promise in balancing the issue of geometrical distortion and STN edge detection. Existing spin echo- and susceptibility-based MRI sequences are compared with new image reconstruction methods. Quantitative susceptibility mapping is the most promising technique for stereotactic imaging of the STN.

ABBREVIATIONSCNR = contrast-to-noise ratio; DBS = deep brain stimulation; DTI = diffusion tensor imaging; FA = fractional anisotropy; FGATIR = fast gray matter acquisition T1 IR; FLAIR = fluid attenuated IR; FLASH = fast low-angle shot; FSE = fast spin echo; GRE = gradient echo; IR = inversion recovery; NSA = number of signal averages; PSIR = phase-sensitive IR; QSM = quantitative susceptibility mapping; SE = spin echo; SN = substantia nigra; SNR = signal-to-noise ratio; STIR = short tau IR; STN = subthalamic nucleus; SWI = susceptibility-weighted imaging; SWPI = susceptibility-weighted phase imaging; T = tesla; T2WI = T2-weighted imaging; T2*WI = T2-weighted magnitude imaging; TI = inversion time; TR = relaxation time; ZI = zona incerta.

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $505.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $600.00

Contributor Notes

Correspondence Christopher Lind, Neurosurgical Service of Western Australia, 1st Fl., G Block, Sir Charles Gairdner Hospital, Nedlands, Perth, WA 6009, Australia. email: christopher.lind@health.gov.wa.au.

INCLUDE WHEN CITING Published online August 21, 2015; DOI: 10.3171/2015.1.JNS142066.

Disclosure The authors report no conflict of interest concerning the materials or methods used in this study or the findings specified in this paper.

  • 1

    Abosch A, , Yacoub E, , Ugurbil K, & Harel N: An assessment of current brain targets for deep brain stimulation surgery with susceptibility-weighted imaging at 7 tesla. Neurosurgery 67:17451756, 2010

    • Search Google Scholar
    • Export Citation
  • 2

    Andrade-Souza YM, , Schwalb JM, , Hamani C, , Eltahawy H, , Hoque T, & Saint-Cyr J, : Comparison of three methods of targeting the subthalamic nucleus for chronic stimulation in Parkinson’s disease. Neurosurgery 56:2 Suppl 360368, 2005

    • Search Google Scholar
    • Export Citation
  • 3

    Ashkan K, , Blomstedt P, , Zrinzo L, , Tisch S, , Yousry T, & Limousin-Dowsey P, : Variability of the subthalamic nucleus: the case for direct MRI guided targeting. Br J Neurosurg 21:197200, 2007

    • Search Google Scholar
    • Export Citation
  • 4

    Barkhoudarian G, , Klochkov T, , Sedrak M, , Frew A, , Gorgulho A, & Behnke E, : A role of diffusion tensor imaging in movement disorder surgery. Acta Neurochir (Wien) 152:20892095, 2010

    • Search Google Scholar
    • Export Citation
  • 5

    Basser PJ, , Pajevic S, , Pierpaoli C, , Duda J, & Aldroubi A: In vivo fiber tractography using DT-MRI data. Magn Reson Med 44:625632, 2000

  • 6

    Bejjani BP, , Dormont D, , Pidoux B, , Yelnik J, , Damier P, & Arnulf I, : Bilateral subthalamic stimulation for Parkinson’s disease by using three-dimensional stereotactic magnetic resonance imaging and electrophysiological guidance. J Neurosurg 92:615625, 2000

    • Search Google Scholar
    • Export Citation
  • 7

    Ben-Haim S, , Asaad WF, , Gale JT, & Eskandar EN: Risk factors for hemorrhage during microelectrode-guided deep brain stimulation and the introduction of an improved microelectrode design. Neurosurgery 64:754763, 2009

    • Search Google Scholar
    • Export Citation
  • 8

    Brass SD, , Chen NK, , Mulkern RV, & Bakshi R: Magnetic resonance imaging of iron deposition in neurological disorders. Top Magn Reson Imaging 17:3140, 2006

    • Search Google Scholar
    • Export Citation
  • 9

    Brunenberg EJ, , Platel B, , Hofman PA, , Ter Haar Romeny BM, & Visser-Vandewalle V: Magnetic resonance imaging techniques for visualization of the subthalamic nucleus. J Neurosurg 115:971984, 2011

    • Search Google Scholar
    • Export Citation
  • 10

    Chavhan GB, , Babyn PS, , Thomas B, , Shroff MM, & Haacke EM: Principles, techniques, and applications of T2*-based MR imaging and its special applications. Radiographics 29:14331449, 2009

    • Search Google Scholar
    • Export Citation
  • 11

    Cheng CH, , Huang HM, , Lin HL, & Chiou SM: 1.5T versus 3T MRI for targeting subthalamic nucleus for deep brain stimulation. Br J Neurosurg 28:467470, 2014

    • Search Google Scholar
    • Export Citation
  • 12

    Danish SF, , Jaggi JL, , Moyer JT, , Finkel L, & Baltuch GH: Conventional MRI is inadequate to delineate the relationship between the red nucleus and subthalamic nucleus in Parkinson’s disease. Stereotact Funct Neurosurg 84:1218, 2006

    • Search Google Scholar
    • Export Citation
  • 13

    de Rochefort L, , Liu T, , Kressler B, , Liu J, , Spincemaille P, & Lebon V, : Quantitative susceptibility map reconstruction from MR phase data using bayesian regularization: validation and application to brain imaging. Magn Reson Med 63:194206, 2010

    • Search Google Scholar
    • Export Citation
  • 14

    Dormont D, , Ricciardi KG, , Tandé D, , Parain K, , Menuel C, & Galanaud D, : Is the subthalamic nucleus hypointense on T2-weighted images? A correlation study using MR imaging and stereotactic atlas data. AJNR Am J Neuroradiol 25:15161523, 2004

    • Search Google Scholar
    • Export Citation
  • 15

    Elmaoğlu M, & Çelik A: MRI Handbook: MR Physics, Patient Positioning, and Protocols New York, Springer, 2012

  • 16

    Frahm J, , Haase A, & Matthaei D: Rapid NMR imaging of dynamic processes using the FLASH technique. Magn Reson Med 3:321327, 1986

  • 17

    Gasparotti R, , Pinelli L, & Liserre R: New MR sequences in daily practice: susceptibility weighted imaging. A pictorial essay Insights Imaging 2:335347, 2011

    • Search Google Scholar
    • Export Citation
  • 18

    Guehl D, , Edwards R, , Cuny E, , Burbaud P, , Rougier A, & Modolo J, : Statistical determination of the optimal subthalamic nucleus stimulation site in patients with Parkinson disease. J Neurosurg 106:101110, 2007

    • Search Google Scholar
    • Export Citation
  • 19

    Gutman DA, , Holtzheimer PE, , Behrens TE, , Johansen-Berg H, & Mayberg HS: A tractography analysis of two deep brain stimulation white matter targets for depression. Biol Psychiatry 65:276282, 2009

    • Search Google Scholar
    • Export Citation
  • 20

    Haacke EM, , Xu Y, , Cheng YC, & Reichenbach JR: Susceptibility weighted imaging (SWI). Magn Reson Med 52:612618, 2004

  • 21

    Ishimori T, , Nakano S, , Mori Y, , Seo R, , Togami T, & Masada T, : Preoperative identification of subthalamic nucleus for deep brain stimulation using three-dimensional phase sensitive inversion recovery technique. Magn Reson Med Sci 6:225229, 2007

    • Search Google Scholar
    • Export Citation
  • 22

    Kerl HU, , Gerigk L, , Pechlivanis I, , Al-Zghloul M, , Groden C, & Nölte I: The subthalamic nucleus at 3.0 Tesla: choice of optimal sequence and orientation for deep brain stimulation using a standard installation protocol: clinical article. J Neurosurg 117:11551165, 2012

    • Search Google Scholar
    • Export Citation
  • 23

    Kerl HU, , Gerigk L, , Pechlivanis I, , Al-Zghloul M, , Groden C, & Nölte IS: The subthalamic nucleus at 7.0 Tesla: evaluation of sequence and orientation for deep-brain stimulation. Acta Neurochir (Wien) 154:20512062, 2012

    • Search Google Scholar
    • Export Citation
  • 24

    Kitajima M, , Korogi Y, , Kakeda S, , Moriya J, , Ohnari N, & Sato T, : Human subthalamic nucleus: evaluation with high-resolution MR imaging at 3.0 T. Neuroradiology 50:675681, 2008

    • Search Google Scholar
    • Export Citation
  • 25

    Konrad PE, , Neimat JS, , Yu H, , Kao CC, , Remple MS, & D’Haese PF, : Customized, miniature rapid-prototype stereotactic frames for use in deep brain stimulator surgery: initial clinical methodology and experience from 263 patients from 2002 to 2008. Stereotact Funct Neurosurg 89:3441, 2011

    • Search Google Scholar
    • Export Citation
  • 26

    Langkammer C, , Schweser F, , Krebs N, , Deistung A, , Goessler W, & Scheurer E, : Quantitative susceptibility mapping (QSM) as a means to measure brain iron? A post mortem validation study. Neuroimage 62:15931599, 2012

    • Search Google Scholar
    • Export Citation
  • 27

    Li J, , Chang S, , Liu T, , Wang Q, , Cui D, & Chen X, : Reducing the object orientation dependence of susceptibility effects in gradient echo MRI through quantitative susceptibility mapping. Magn Reson Med 68:15631569, 2012

    • Search Google Scholar
    • Export Citation
  • 28

    Littlechild P, , Varma TR, , Eldridge PR, , Fox S, , Forster A, & Fletcher N, : Variability in position of the subthalamic nucleus targeted by magnetic resonance imaging and microelectrode recordings as compared to atlas co-ordinates. Stereotact Funct Neurosurg 80:8287, 2003

    • Search Google Scholar
    • Export Citation
  • 29

    Liu T, , Eskreis-Winkler S, , Schweitzer AD, , Chen W, , Kaplitt MG, & Tsiouris AJ, : Improved subthalamic nucleus depiction with quantitative susceptibility mapping. Radiology 269:216223, 2013

    • Search Google Scholar
    • Export Citation
  • 30

    Lu H, , Nagae-Poetscher LM, , Golay X, , Lin D, , Pomper M, & van Zijl PC: Routine clinical brain MRI sequences for use at 3.0 Tesla. J Magn Reson Imaging 22:1322, 2005

    • Search Google Scholar
    • Export Citation
  • 31

    Mallet L, , Schüpbach M, , N’Diaye K, , Remy P, , Bardinet E, & Czernecki V, : Stimulation of subterritories of the subthalamic nucleus reveals its role in the integration of the emotional and motor aspects of behavior. Proc Natl Acad Sci U S A 104:1066110666, 2007

    • Search Google Scholar
    • Export Citation
  • 32

    Manova ES, , Habib CA, , Boikov AS, , Ayaz M, , Khan A, & Kirsch WM, : Characterizing the mesencephalon using susceptibility-weighted imaging. AJNR Am J Neuroradiol 30:569574, 2009

    • Search Google Scholar
    • Export Citation
  • 33

    Massey LA, , Miranda MA, , Zrinzo L, , Al-Helli O, , Parkes HG, & Thornton JS, : High resolution MR anatomy of the subthalamic nucleus: imaging at 9.4 T with histological validation. Neuroimage 59:20352044, 2012

    • Search Google Scholar
    • Export Citation
  • 34

    Menuel C, , Garnero L, , Bardinet E, , Poupon F, , Phalippou D, & Dormont D: Characterization and correction of distortions in stereotactic magnetic resonance imaging for bilateral subthalamic stimulation in Parkinson disease. J Neurosurg 103:256266, 2005

    • Search Google Scholar
    • Export Citation
  • 35

    Mori S, , Crain BJ, , Chacko VP, & van Zijl PC: Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 45:265269, 1999

    • Search Google Scholar
    • Export Citation
  • 36

    O’Gorman RL, , Shmueli K, , Ashkan K, , Samuel M, , Lythgoe DJ, & Shahidiani A, : Optimal MRI methods for direct stereotactic targeting of the subthalamic nucleus and globus pallidus. Eur Radiol 21:130136, 2011

    • Search Google Scholar
    • Export Citation
  • 37

    Patil PG, , Conrad EC, , Aldridge JW, , Chenevert TL, & Chou KL: The anatomical and electrophysiological subthalamic nucleus visualized by 3-T magnetic resonance imaging. Neurosurgery 71:10891095, 2012

    • Search Google Scholar
    • Export Citation
  • 38

    Plaha P, , Ben-Shlomo Y, , Patel NK, & Gill SS: Stimulation of the caudal zona incerta is superior to stimulation of the subthalamic nucleus in improving contralateral parkinsonism. Brain 129:17321747, 2006

    • Search Google Scholar
    • Export Citation
  • 39

    Poupon C, , Clark CA, , Frouin V, , Régis J, , Bloch I, & Le Bihan D, : Regularization of diffusion-based direction maps for the tracking of brain white matter fascicles. Neuroimage 12:184195, 2000

    • Search Google Scholar
    • Export Citation
  • 40

    Rauscher A, , Sedlacik J, , Barth M, , Haacke EM, & Reichenbach JR: Noninvasive assessment of vascular architecture and function during modulated blood oxygenation using susceptibility weighted magnetic resonance imaging. Magn Reson Med 54:8795, 2005

    • Search Google Scholar
    • Export Citation
  • 41

    Sarkar SN, , Sarkar PR, & Papavassiliou E: Subthalamic nuclear tissue contrast in inversion recovery MRI decreases with age in medically refractory Parkinson’s disease. J Neuroimaging 25:303306, 2015

    • Search Google Scholar
    • Export Citation
  • 42

    Schäfer A, , Forstmann BU, , Neumann J, , Wharton S, , Mietke A, & Bowtell R, : Direct visualization of the subthalamic nucleus and its iron distribution using high-resolution susceptibility mapping. Hum Brain Mapp 33:28312842, 2012

    • Search Google Scholar
    • Export Citation
  • 43

    Schaltenbrand G, , Wahren W, & Hassler R: Atlas for Stereotaxy of the Human Brain 2 Stuttgart, Thieme, 1977

  • 44

    Schweser F, , Deistung A, , Lehr BW, & Reichenbach JR: Differentiation between diamagnetic and paramagnetic cerebral lesions based on magnetic susceptibility mapping. Med Phys 37:51655178, 2010

    • Search Google Scholar
    • Export Citation
  • 45

    Schweser F, , Deistung A, , Sommer K, & Reichenbach JR: Toward online reconstruction of quantitative susceptibility maps: superfast dipole inversion. Magn Reson Med 69:15821594, 2013

    • Search Google Scholar
    • Export Citation
  • 46

    Sedrak M, , Gorgulho A, , Bari A, , Behnke E, , Frew A, & Gevorky-an I, : Diffusion tensor imaging (DTI) and colored fractional anisotropy (FA) mapping of the subthalamic nucleus (STN) and the globus pallidus interna (GPi). Acta Neurochir (Wien) 152:20792084, 2010

    • Search Google Scholar
    • Export Citation
  • 47

    Sedrak M, , Gorgulho A, , De Salles AF, , Frew A, , Behnke E, & Ishida W, : The role of modern imaging modalities on deep brain stimulation targeting for mental illness. Acta Neurochir Suppl 101:37, 2008

    • Search Google Scholar
    • Export Citation
  • 48

    Shields DC, , Gorgulho A, , Behnke E, , Malkasian D, & DeSalles AA: Contralateral conjugate eye deviation during deep brain stimulation of the subthalamic nucleus. J Neurosurg 107:3742, 2007

    • Search Google Scholar
    • Export Citation
  • 49

    Shmueli K, , de Zwart JA, , van Gelderen P, , Li TQ, , Dodd SJ, & Duyn JH: Magnetic susceptibility mapping of brain tissue in vivo using MRI phase data. Magn Reson Med 62:15101522, 2009

    • Search Google Scholar
    • Export Citation
  • 50

    Simon SL, , Douglas P, , Baltuch GH, & Jaggi JL: Error analysis of MRI and Leksell stereotactic frame target localization in deep brain stimulation surgery. Stereotact Funct Neurosurg 83:15, 2005

    • Search Google Scholar
    • Export Citation
  • 51

    Starr PA, , Christine CW, , Theodosopoulos PV, , Lindsey N, , Byrd D, & Mosley A, : Implantation of deep brain stimulators into the subthalamic nucleus: technical approach and magnetic resonance imaging-verifled lead locations. J Neurosurg 97:370387, 2002

    • Search Google Scholar
    • Export Citation
  • 52

    Starr PA, , Vitek JL, , DeLong M, & Bakay RA: Magnetic resonance imaging-based stereotactic localization of the globus pallidus and subthalamic nucleus. Neurosurgery 44:303314, 1999

    • Search Google Scholar
    • Export Citation
  • 53

    Sudhyadhom A, , Haq IU, , Foote KD, , Okun MS, & Bova FJ: A high resolution and high contrast MRI for differentiation of subcortical structures for DBS targeting: the Fast Gray Matter Acquisition T1 Inversion Recovery (FGATIR). Neuroimage 47:Suppl 2 T44T52, 2009

    • Search Google Scholar
    • Export Citation
  • 54

    Thani NB, , Bala A, & Lind CR: Accuracy of magnetic resonance imaging-directed frame-based stereotaxis. Neurosurgery 70:1 Suppl Operative 114124, 2012

    • Search Google Scholar
    • Export Citation
  • 55

    Thani NB, , Bala A, , Swann GB, & Lind CR: Accuracy of postoperative computed tomography and magnetic resonance image fusion for assessing deep brain stimulation electrodes. Neurosurgery 69:207214, 2011

    • Search Google Scholar
    • Export Citation
  • 56

    Tsai ST, , Lin SH, , Lin SZ, , Chen JY, , Lee CW, & Chen SY: Neuropsychological effects after chronic subthalamic stimulation and the topography of the nucleus in Parkinson’s disease. Neurosurgery 61:E10241030, 2007

    • Search Google Scholar
    • Export Citation
  • 57

    Vertinsky AT, , Coenen VA, , Lang DJ, , Kolind S, , Honey CR, & Li D, : Localization of the subthalamic nucleus: optimization with susceptibility-weighted phase MR imaging. AJNR Am J Neuroradiol 30:17171724, 2009

    • Search Google Scholar
    • Export Citation
  • 58

    Wu B, , Li W, , Guidon A, & Liu C: Whole brain susceptibility mapping using compressed sensing. Magn Reson Med 67:137147, 2012

  • 59

    Zonenshayn M, , Rezai AR, , Mogilner AY, , Beric A, , Sterio D, & Kelly PJ: Comparison of anatomic and neurophysiological methods for subthalamic nucleus targeting. Neurosurgery 47:282294, 2000

    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1419 549 42
PDF Downloads 984 299 31
EPUB Downloads 0 0 0