Contemporary carotid imaging: from degree of stenosis to plaque vulnerability

Waleed Brinjikji Departments of Radiology,

Search for other papers by Waleed Brinjikji in
Current site
Google Scholar
PubMed
Close
 MD
,
John Huston III Departments of Radiology,

Search for other papers by John Huston III in
Current site
Google Scholar
PubMed
Close
 MD
,
Alejandro A. Rabinstein Neurology,

Search for other papers by Alejandro A. Rabinstein in
Current site
Google Scholar
PubMed
Close
 MD
,
Gyeong-Moon Kim Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea

Search for other papers by Gyeong-Moon Kim in
Current site
Google Scholar
PubMed
Close
 MD
,
Amir Lerman Cardiovascular Diseases, and

Search for other papers by Amir Lerman in
Current site
Google Scholar
PubMed
Close
 MD
, and
Giuseppe Lanzino Neurosurgery, Mayo Clinic, Rochester, Minnesota; and

Search for other papers by Giuseppe Lanzino in
Current site
Google Scholar
PubMed
Close
 MD
Restricted access

Purchase Now

USD  $45.00

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $536.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $636.00
USD  $45.00
USD  $536.00
USD  $636.00
Print or Print + Online Sign in

Carotid artery stenosis is a well-established risk factor of ischemic stroke, contributing to up to 10%-20% of strokes or transient ischemic attacks. Many clinical trials over the last 20 years have used measurements of carotid artery stenosis as a means to risk stratify patients. However, with improvements in vascular imaging techniques such as CT angiography and MR angiography, ultrasonography, and PET/CT, it is now possible to risk stratify patients, not just on the degree of carotid artery stenosis but also on how vulnerable the plaque is to rupture, resulting in ischemic stroke. These imaging techniques are ushering in an emerging paradigm shift that allows for risk stratifications based on the presence of imaging features such as intraplaque hemorrhage (IPH), plaque ulceration, plaque neovascularity, fibrous cap thickness, and presence of a lipid-rich necrotic core (LRNC). It is important for the neurosurgeon to be aware of these new imaging techniques that allow for improved patient risk stratification and outcomes. For example, a patient with a low-grade stenosis but an ulcerated plaque may benefit more from a revascularization procedure than a patient with a stable 70% asymptomatic stenosis with a thick fibrous cap.

This review summarizes the current state-of-the-art advances in carotid plaque imaging. Currently, MRI is the gold standard in carotid plaque imaging, with its high resolution and high sensitivity for identifying IPH, ulceration, LRNC, and inflammation. However, MRI is limited due to time constraints. CT also allows for high-resolution imaging and can accurately detect ulceration and calcification, but cannot reliably differentiate LRNC from IPH. PET/CT is an effective technique to identify active inflammation within the plaque, but it does not allow for assessment of anatomy, ulceration, IPH, or LRNC. Ultrasonography, with the aid of contrast enhancement, is a cost-effective technique to assess plaque morphology and characteristics, but it is limited in sensitivity and specificity for detecting LRNC, plaque hemorrhage, and ulceration compared with MRI.

Also summarized is how these advanced imaging techniques are being used in clinical practice to risk stratify patients with low- and high-grade carotid artery stenosis. For example, identification of IPH on MRI in patients with low-grade carotid artery stenosis is a risk factor for failure of medical therapy, and studies have shown that such patients may fair better with carotid endarterectomy (CEA). MR plaque imaging has also been found to be useful in identifying revascularization candidates who would be better candidates for CEA than carotid artery stenting (CAS), as high intraplaque signal on time of flight imaging is associated with vulnerable plaque and increased rates of adverse events in patients undergoing CAS but not CEA.

ABBREVIATIONS

AHA = American Heart Association; CAS = carotid artery stenting; CEA = carotid endarterectomy; CEUS = contrast-enhanced ultrasonography; CTA = CT angiography; DCE = dynamic contrast-enhanced; DSCT = dual-source CT; FDG = fluorodeoxyglucose; FSE = fast spin echo; Gd = gadolinium; HU = Hounsfield units; IPH = intraplaque hemorrhage; LRNC = lipid-rich necrotic core; MDCT = multidetector-row CT; MDCTA = MDCT angiography; MES = microembolic signal; MMP-9 = matrix metalloproteinase-9; MRA = MR angiography; PDW = proton density-weighted; SUV = standardized uptake value; SUVmax = maximal SUV; TBR = target-to-background ratio; TCD = transcranial Doppler ultrasonography; TIA = transient ischemic attack; TOF = time of flight; USPIO = ultrasmall superparamagnetic iron oxide.
  • Collapse
  • Expand
  • 1

    Ajduk M, , Pavić L, , Bulimbasić S, , Sarlija M, , Pavić P, & Patrlj L, et al.: Multidetector-row computed tomography in evaluation of atherosclerotic carotid plaques complicated with intraplaque hemorrhage. Ann Vasc Surg 23:186193, 2009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2

    Aldemir E, , Apaydin M, , Varer M, & Uluc E: Echolucency of carotid plaques and cerebrovascular events. J Clin Ultrasound 40:399404, 2012

  • 3

    Altaf N, , Daniels L, , Morgan PS, , Auer D, , MacSweeney ST, & Moody AR, et al.: Detection of intraplaque hemorrhage by magnetic resonance imaging in symptomatic patients with mild to moderate carotid stenosis predicts recurrent neurological events. J Vasc Surg 47:337342, 2008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4

    Anzidei M, , Napoli A, , Geiger D, , Cavallo Marincola B, , Zini C, & Zaccagna F, et al.: Preliminary experience with MRA in evaluating the degree of carotid stenosis and plaque morphology using high-resolution sequences after gadofosveset trisodium (Vasovist) administration: comparison with CTA and DSA. Radiol Med (Torino) 115:634647, 2010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5

    Arnold JA, , Modaresi KB, , Thomas N, , Taylor PR, & Padayachee TS: Carotid plaque characterization by duplex scanning: observer error may undermine current clinical trials. Stroke 30:6165, 1999

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6

    Ballotta E, , Angelini A, , Mazzalai F, , Piatto G, , Toniato A, & Baracchini C: Carotid endarterectomy for symptomatic low-grade carotid stenosis. J Vasc Surg 59:2531, 2014

  • 7

    Barger AC, , Beeuwkes R III, , Lainey LL, & Silverman KJ: Hypothesis: vasa vasorum and neovascularization of human coronary arteries. A possible role in the pathophysiology of atherosclerosis. N Engl J Med 310:175177, 1984

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8

    Barnett HJ, , Taylor DW, , Eliasziw M, , Fox AJ, , Ferguson GG, & Haynes RB, et al.: Benefit of carotid endarterectomy in patients with symptomatic moderate or severe stenosis. N Engl J Med 339:14151425, 1998

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9

    Beer AJ, , Pelisek J, , Heider P, , Saraste A, , Reeps C, & Metz S, et al.: PET/CT imaging of integrin avb3 expression in human carotid atherosclerosis. JACC Cardiovasc Imaging 7:178187, 2014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10

    Blomberg BA, , Thomassen A, , Takx RA, , Hildebrandt MG, , Simonsen JA, & Buch-Olsen KM, et al.: Delayed 18F-fluorodeoxyglucose PET/CT imaging improves quantitation of atherosclerotic plaque inflammation: results from the CAMONA study. J Nucl Cardiol 21:588597, 2014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11

    Calcagno C, , Ramachandran S, , Izquierdo-Garcia D, , Mani V, , Millon A, & Rosenbaum D, et al.: The complementary roles of dynamic contrast-enhanced MRI and 18F-fluorodeoxyglucose PET/CT for imaging of carotid atherosclerosis. Eur J Nucl Med Mol Imaging 40:18841893, 2013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12

    Cappendijk VC, , Cleutjens KB, , Heeneman S, , Schurink GW, , Welten RJ, & Kessels AG, et al.: In vivo detection of hemorrhage in human atherosclerotic plaques with magnetic resonance imaging. J Magn Reson Imaging 20:105110, 2004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13

    Cappendijk VC, , Kessels AG, , Heeneman S, , Cleutjens KB, , Schurink GW, & Welten RJ, et al.: Comparison of lipid-rich necrotic core size in symptomatic and asymptomatic carotid atherosclerotic plaque: Initial results. J Magn Reson Imaging 27:13561361, 2008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14

    Carr SC, , Farb A, , Pearce WH, , Virmani R, & Yao JS: Activated inflammatory cells are associated with plaque rupture in carotid artery stenosis. Surgery 122:757764, 1997

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15

    Chan JM, , Monaco C, , Wylezinska-Arridge M, , Tremoleda JL, & Gibbs RG: Imaging of the vulnerable carotid plaque: biological targeting of inflammation in atherosclerosis using iron oxide particles and MRI. Eur J Vasc Endovasc Surg 47:462469, 2014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16

    Chen W, & Dilsizian V: Targeted PET/CT imaging of vulnerable atherosclerotic plaques: microcalcification with sodium fluoride and inflammation with fluorodeoxyglucose. Curr Cardiol Rep 15:364, 2013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17

    Chu B, , Kampschulte A, , Ferguson MS, , Kerwin WS, , Yarnykh VL, & O'Brien KD, et al.: Hemorrhage in the atherosclerotic carotid plaque: a high-resolution MRI study. Stroke 35:10791084, 2004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18

    Clevert DA, , Sommer WH, , Helck A, , Saam T, & Reiser M: Improved carotid atherosclerotic plaques imaging with contrast-enhanced ultrasound (CEUS). Clin Hemorheol Microcirc 48:141148, 2011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19

    Coli S, , Magnoni M, , Sangiorgi G, , Marrocco-Trischitta MM, , Melisurgo G, & Mauriello A, et al.: Contrast-enhanced ultrasound imaging of intraplaque neovascularization in carotid arteries: correlation with histology and plaque echogenicity. J Am Coll Cardiol 52:223230, 2008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20

    Das M, , Braunschweig T, , Mühlenbruch G, , Mahnken AH, , Krings T, & Langer S, et al.: Carotid plaque analysis: comparison of dual-source computed tomography (CT) findings and histopathological correlation. Eur J Vasc Endovasc Surg 38:1419, 2009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21

    Della-Morte D, , Moussa I, , Elkind MS, , Sacco RL, & Rundek T: The short-term effect of atorvastatin on carotid plaque morphology assessed by computer-assisted gray-scale densitometry: a pilot study. Neurol Res 33:991994, 2011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22

    den Hartog AG, , Bovens SM, , Koning W, , Hendrikse J, , Luijten PR, & Moll FL, et al.: Current status of clinical magnetic resonance imaging for plaque characterisation in patients with carotid artery stenosis. Eur J Vasc Endovasc Surg 45:721, 2013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23

    Deyama J, , Nakamura T, , Takishima I, , Fujioka D, , Kawabata K, & Obata JE, et al.: Contrast-enhanced ultrasound imaging of carotid plaque neovascularization is useful for identifying high-risk patients with coronary artery disease. Circ J 77:14991507, 2013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24

    Droste DW, , Jürgens R, , Nabavi DG, , Schuierer G, , Weber S, & Ringelstein EB: Echocontrast-enhanced ultrasound of extracranial internal carotid artery high-grade stenosis and occlusion. Stroke 30:23022306, 1999

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25

    Eliasziw M, , Streifler JY, , Fox AJ, , Hachinski VC, , Ferguson GG, & Barnett HJ: Significance of plaque ulceration in symptomatic patients with high-grade carotid stenosis. North American Symptomatic Carotid Endarterectomy Trial. Stroke 25:304308, 1994

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26

    Etesami M, , Hoi Y, , Steinman DA, , Gujar SK, , Nidecker AE, & Astor BC, et al.: Comparison of carotid plaque ulcer detection using contrast-enhanced and time-of-flight MRA techniques. AJNR Am J Neuroradiol 34:177184, 2013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27

    European Carotid Surgery Trialists’ Collaborative Group: Randomised trial of endarterectomy for recently symptomatic carotid stenosis: final results of the MRC European Carotid Surgery Trial (ECST). Lancet 351:13791387, 1998

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28

    Fairhead JF, & Rothwell PM: The need for urgency in identification and treatment of symptomatic carotid stenosis is already established. Cerebrovasc Dis 19:355358, 2005

  • 29

    Falk E: Why do plaques rupture?. Circulation 86:6 Suppl III30III42, 1992

  • 30

    Ferrer JM, , Samsó JJ, , Serrando JR, , Valenzuela VF, , Montoya SB, & Docampo MM: Use of ultrasound contrast in the diagnosis of carotid artery occlusion. J Vasc Surg 31:736741, 2000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31

    Folco EJ, , Sheikine Y, , Rocha VZ, , Christen T, , Shvartz E, & Sukhova GK, et al.: Hypoxia but not inflammation augments glucose uptake in human macrophages: Implications for imaging atherosclerosis with 18fluorine-labeled 2-deoxy-D-glucose positron emission tomography. J Am Coll Cardiol 58:603614, 2011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32

    Freilinger TM, , Schindler A, , Schmidt C, , Grimm J, , Cyran C, & Schwarz F, et al.: Prevalence of nonstenosing, complicated atherosclerotic plaques in cryptogenic stroke. JACC Cardiovasc Imaging 5:397405, 2012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33

    Gaens ME, , Backes WH, , Rozel S, , Lipperts M, , Sanders SN, & Jaspers K, et al.: Dynamic contrast-enhanced MR imaging of carotid atherosclerotic plaque: model selection, reproducibility, and validation. Radiology 266:271279, 2013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34

    Glagov S, , Weisenberg E, , Zarins CK, , Stankunavicius R, & Kolettis GJ: Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med 316:13711375, 1987

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35

    Griswold MA, , Jakob PM, , Heidemann RM, , Nittka M, , Jellus V, & Wang J, et al.: Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 47:12021210, 2002

  • 36

    Gupta A, , Baradaran H, , Schweitzer AD, , Kamel H, , Pandya A, & Delgado D, et al.: Carotid plaque MRI and stroke risk: a systematic review and meta-analysis. Stroke 44:30713077, 2013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37

    Halliday A, , Mansfield A, , Marro J, , Peto C, , Peto R, & Potter J, et al.: Prevention of disabling and fatal strokes by successful carotid endarterectomy in patients without recent neurological symptoms: randomised controlled trial. Lancet 363:14911502, 2004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38

    Handa N, , Matsumoto M, , Maeda H, , Hougaku H, & Kamada T: Ischemic stroke events and carotid atherosclerosis. Results of the Osaka Follow-up Study for Ultrasonographic Assessment of Carotid Atherosclerosis (the OSACA Study). Stroke 26:17811786, 1995

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39

    Heidemann RM, , Griswold MA, , Haase A, & Jakob PM: VD-AUTO-SMASH imaging. Magn Reson Med 45:10661074, 2001

  • 40

    Hermann S, , Starsichova A, , Waschkau B, , Kuhlmann M, , Wenning C, & Schober O, et al.: Non-FDG imaging of atherosclerosis: will imaging of MMPs assess plaque vulnerability?. J Nucl Cardiol 19:609617, 2012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41

    Hobson RW II, , Weiss DG, , Fields WS, , Goldstone J, , Moore WS, & Towne JB, et al.: Efficacy of carotid endarterectomy for asymptomatic carotid stenosis. N Engl J Med 328:221227, 1993

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42

    Horie N, , Morikawa M, , Ishizaka S, , Takeshita T, , So G, & Hayashi K, et al.: Assessment of carotid plaque stability based on the dynamic enhancement pattern in plaque components with multidetector CT angiography. Stroke 43:393398, 2012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43

    Huang PT, , Huang FG, , Zou CP, , Sun HY, , Tian XQ, & Yang Y, et al.: Contrast-enhanced sonographic characteristics of neovascularization in carotid atherosclerotic plaques. J Clin Ultrasound 36:346351, 2008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44

    Jaipersad AS, , Shantsila A, , Silverman S, , Lip GY, & Shantsila E: Evaluation of carotid plaque neovascularization using contrast ultrasound. Angiology 64:447450, 2013

  • 45

    Jonasson L, , Holm J, , Skalli O, , Bondjers G, & Hansson GK: Regional accumulations of T cells, macrophages, and smooth muscle cells in the human atherosclerotic plaque. Arteriosclerosis 6:131138, 1986

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46

    Joshi NV, , Vesey AT, , Williams MC, , Shah AS, , Calvert PA, & Craighead FH, et al.: 18F-fluoride positron emission tomography for identification of ruptured and high-risk coronary atherosclerotic plaques: a prospective clinical trial. Lancet 383:705713, 2014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47

    Kadoglou NP, , Sailer N, , Moumtzouoglou A, , Kapelouzou A, , Gerasimidis T, & Liapis CD: Aggressive lipid-lowering is more effective than moderate lipid-lowering treatment in carotid plaque stabilization. J Vasc Surg 51:114121, 2010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48

    Kern R, , Szabo K, , Hennerici M, & Meairs S: Characterization of carotid artery plaques using real-time compound B-mode ultrasound. Stroke 35:870875, 2004

  • 49

    Kerwin WS, , Oikawa M, , Yuan C, , Jarvik GP, & Hatsukami TS: MR imaging of adventitial vasa vasorum in carotid atherosclerosis. Magn Reson Med 59:507514, 2008

  • 50

    Kim HS, , Woo JS, , Kim BY, , Jang HH, , Hwang SJ, & Kwon SJ, et al.: Biochemical and clinical correlation of intraplaque neovascularization using contrast-enhanced ultrasound of the carotid artery. Atherosclerosis 233:579583, 2014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51

    Kirsch JD, , Mathur M, , Johnson MH, , Gowthaman G, & Scoutt LM: Advances in transcranial Doppler US: imaging ahead. Radiographics 33:E1E14, 2013

  • 52

    Kurata M, , Nose M, , Shimazu Y, , Aoba T, , Kohada Y, & Yorioka S, et al.: Microvasculature of carotid atheromatous plaques: hemorrhagic plaques have dense microvessels with fenestrations to the arterial lumen. J Stroke Cerebrovasc Dis 23:14401446, 2014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53

    Kwee RM, , Truijman MT, , Mess WH, , Teule GJ, , ter Berg JW, & Franke CL, et al.: Potential of integrated [18F] fluorodeoxyglucose positron-emission tomography/CT in identifying vulnerable carotid plaques. AJNR Am J Neuroradiol 32:950954, 2011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54

    Kyriacou EC, , Pattichis C, , Pattichis M, , Loizou C, , Christodoulou C, & Kakkos SK, et al.: A review of noninvasive ultrasound image processing methods in the analysis of carotid plaque morphology for the assessment of stroke risk. IEEE Trans Inf Technol Biomed 14:10271038, 2010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55

    Leschka S, , Scheffel H, , Desbiolles L, , Plass A, , Gaemperli O, & Valenta I, et al.: Image quality and reconstruction intervals of dual-source CT coronary angiography: recommendations for ECG-pulsing windowing. Invest Radiol 42:543549, 2007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56

    Lindner JR, , Dayton PA, , Coggins MP, , Ley K, , Song J, & Ferrara K, et al.: Noninvasive imaging of inflammation by ultrasound detection of phagocytosed microbubbles. Circulation 102:531538, 2000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57

    Markus HS, & Brown MM: Differentiation between different pathological cerebral embolic materials using transcranial Doppler in an in vitro model. Stroke 24:15, 1993

  • 58

    Marnane M, , Merwick A, , Sheehan OC, , Hannon N, , Foran P, & Grant T, et al.: Carotid plaque inflammation on 18F-fluorodeoxyglucose positron emission tomography predicts early stroke recurrence. Ann Neurol 71:709718, 2012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59

    Masteling MG, , Zeebregts CJ, , Tio RA, , Breek JC, , Tietge UJ, & de Boer JF, et al.: High-resolution imaging of human atherosclerotic carotid plaques with micro 18F-FDG PET scanning exploring plaque vulnerability. J Nucl Cardiol 18:10661075, 2011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 60

    Mathiesen EB, , Bønaa KH, & Joakimsen O: Echolucent plaques are associated with high risk of ischemic cerebrovascular events in carotid stenosis: the Tromsø study. Circulation 103:21712175, 2001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 61

    Menezes LJ, , Kotze CW, , Agu O, , Richards T, , Brookes J, & Goh VJ, et al.: Investigating vulnerable atheroma using combined (18)F-FDG PET/CT angiography of carotid plaque with immunohistochemical validation. J Nucl Med 52:16981703, 2011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 62

    Michel JB, , Delbosc S, , Ho-Tin-Noé B, , Leseche G, , Nicoletti A, & Meilhac O, et al.: From intraplaque haemorrhages to plaque vulnerability: biological consequences of intraplaque haemorrhages. J Cardiovasc Med (Hagerstown) 13:628634, 2012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 63

    Milei J, , Parodi JC, , Fernandez Alonso G, , Barone A, , Beigelman R, & Ferreira LM, et al.: Carotid atherosclerosis. Immunocytochemical analysis of the vascular and cellular composition in endarterectomies. Cardiologia 41:535542, 1996

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 64

    Millon A, , Boussel L, , Brevet M, , Mathevet JL, , Canet-Soulas E, & Mory C, et al.: Clinical and histological significance of gadolinium enhancement in carotid atherosclerotic plaque. Stroke 43:30233028, 2012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 65

    Mizoguchi M, , Tahara N, , Tahara A, , Nitta Y, , Kodama N, & Oba T, et al.: Pioglitazone attenuates atherosclerotic plaque inflammation in patients with impaired glucose tolerance or diabetes a prospective, randomized, comparator-controlled study using serial FDG PET/CT imaging study of carotid artery and ascending aorta. JACC Cardiovasc Imaging 4:11101118, 2011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 66

    Moustafa RR, , Izquierdo-Garcia D, , Fryer TD, , Graves MJ, , Rudd JH, & Gillard JH, et al.: Carotid plaque inflammation is associated with cerebral microembolism in patients with recent transient ischemic attack or stroke: a pilot study. Circ Cardiovasc Imaging 3:536541, 2010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 67

    Mughal MM, , Khan MK, , DeMarco JK, , Majid A, , Shamoun F, & Abela GS: Symptomatic and asymptomatic carotid artery plaque. Expert Rev Cardiovasc Ther 9:13151330, 2011

  • 68

    Müller A, , Beck K, , Rancic Z, , Müller C, , Fischer CR, & Betzel T, et al.: Imaging atherosclerotic plaque inflammation via folate receptor targeting using a novel 18F-folate radiotracer. Mol Imaging 13:111, 2014

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 69

    Muraki M, , Mikami T, , Yoshimoto T, , Fujimoto S, , Tokuda K, & Kaneko S, et al.: New criteria for the sonographic diagnosis of a plaque ulcer in the extracranial carotid artery. AJR Am J Roentgenol 198:11611166, 2012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 70

    Nakamura T, , Tsutsumi Y, , Shimizu Y, & Uchiyama S: Ulcerated carotid plaques with ultrasonic echolucency are causatively associated with thromboembolic cerebrovascular events. J Stroke Cerebrovasc Dis 22:9399, 2013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 71

    Niccoli Asabella A, , Ciccone MM, , Cortese F, , Scicchitano P, , Gesualdo M, & Zito A, et al.: Higher reliability of 18F-FDG target background ratio compared to standardized uptake value in vulnerable carotid plaque detection: a pilot study. Ann Nucl Med 28:571579, 2014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 72

    North American Symptomatic Carotid Endarterectomy Trial Collaborators: Beneficial effect of carotid endarterectomy in symptomatic patients with high-grade carotid stenosis. N Engl J Med 325:445453, 1991

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 73

    Piscaglia F, , Nolsøe C, , Dietrich CF, , Cosgrove DO, , Gilja OH, & Bachmann Nielsen M, et al.: The EFSUMB Guidelines and Recommendations on the Clinical Practice of Contrast Enhanced Ultrasound (CEUS): update 2011 on non-hepatic applications. Ultraschall Med 33:3359, 2012

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 74

    Qiao Y, , Etesami M, , Astor BC, & Zeiler SR: Carotid plaque neovascularization and hemorrhage detected by MR imaging are associated with recent cerebrovascular ischemic events. AJNR Am J Neuroradiol 33:755760, 2012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 75

    Qureshi AI, , Alexandrov AV, , Tegeler CH, , Hobson RW II, , Dennis Baker J, & Hopkins LN: Guidelines for screening of extracranial carotid artery disease. J Neuroimaging 17:1947, 2007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 76

    Reiter M, , Horvat R, , Puchner S, , Rinner W, , Polterauer P, & Lammer J, et al.: Plaque imaging of the internal carotid artery—correlation of B-flow imaging with histopathology. AJNR Am J Neuroradiol 28:122126, 2007

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 77

    Ritter MA, , Dittrich R, , Thoenissen N, , Ringelstein EB, & Nabavi DG: Prevalence and prognostic impact of microembolic signals in arterial sources of embolism. A systematic review of the literature. J Neurol 255:953961, 2008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 78

    Ritter MA, , Theismann K, , Schmiedel M, , Ringelstein EB, & Dittrich R: Vascularization of carotid plaque in recently symptomatic patients is associated with the occurrence of transcranial microembolic signals. Eur J Neurol 20:12181221, 2013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 79

    Rudd JH, , Myers KS, , Bansilal S, , Machac J, , Pinto CA, & Tong C, et al.: Atherosclerosis inflammation imaging with 18FFDG PET: carotid, iliac, and femoral uptake reproducibility, quantification methods, and recommendations. J Nucl Med 49:871878, 2008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 80

    Rudd JH, , Myers KS, , Bansilal S, , Machac J, , Rafique A, & Farkouh M, et al.: (18)Fluorodeoxyglucose positron emission tomography imaging of atherosclerotic plaque inflammation is highly reproducible: implications for atherosclerosis therapy trials. J Am Coll Cardiol 50:892896, 2007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 81

    Saam T, , Ferguson MS, , Yarnykh VL, , Takaya N, , Xu D, & Polissar NL, et al.: Quantitative evaluation of carotid plaque composition by in vivo MRI. Arterioscler Thromb Vasc Biol 25:234239, 2005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 82

    Saam T, , Hatsukami TS, , Takaya N, , Chu B, , Underhill H, & Kerwin WS, et al.: The vulnerable, or high-risk, atherosclerotic plaque: noninvasive MR imaging for characterization and assessment. Radiology 244:6477, 2007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 83

    Saam T, , Hetterich H, , Hoffmann V, , Yuan C, , Dichgans M, & Poppert H, et al.: Meta-analysis and systematic review of the predictive value of carotid plaque hemorrhage on cerebrovascular events by magnetic resonance imaging. J Am Coll Cardiol 62:10811091, 2013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 84

    Saba L, , Caddeo G, , Sanfilippo R, , Montisci R, & Mallarini G: CT and ultrasound in the study of ulcerated carotid plaque compared with surgical results: potentialities and advantages of multidetector row CT angiography. AJNR Am J Neuroradiol 28:10611066, 2007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 85

    Saba L, , Caddeo G, , Sanfilippo R, , Montisci R, & Mallarini G: Efficacy and sensitivity of axial scans and different reconstruction methods in the study of the ulcerated carotid plaque using multidetector-row CT angiography: comparison with surgical results. AJNR Am J Neuroradiol 28:716723, 2007

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 86

    Saba L, , Lai ML, , Montisci R, , Tamponi E, , Sanfilippo R, & Faa G, et al.: Association between carotid plaque enhancement shown by multidetector CT angiography and histologically validated microvessel density. Eur Radiol 22:22372245, 2012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 87

    Saba L, & Mallarini G: Carotid plaque enhancement and symptom correlations: an evaluation by using multidetector row CT angiography. AJNR Am J Neuroradiol 32:19191925, 2011

  • 88

    Saba L, & Mallarini G: Fissured fibrous cap of vulnerable carotid plaques and symptomaticity: are they correlated? Preliminary results by using multi-detector-row CT angiography. Cerebrovasc Dis 27:322327, 2009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 89

    Saba L, , Tamponi E, , Raz E, , Lai L, , Montisci R, & Piga M, et al.: Correlation between fissured fibrous cap and contrast enhancement: preliminary results with the use of CTA and histologic validation. AJNR Am J Neuroradiol 35:754759, 2014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 90

    Saito H, , Kuroda S, , Hirata K, , Magota K, , Shiga T, & Tamaki N, et al.: Validity of dual MRI and F-FDG PET imaging in predicting vulnerable and inflamed carotid plaque. Cerebrovasc Dis 35:370377, 2013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 91

    Shalhoub J, , Monaco C, , Owen DR, , Gauthier T, , Thapar A, & Leen EL, et al.: Late-phase contrast-enhanced ultrasound reflects biological features of instability in human carotid atherosclerosis. Stroke 42:36343636, 2011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 92

    Sheikine Y, & Akram K: FDG-PET imaging of atherosclerosis: Do we know what we see?. Atherosclerosis 211:371380, 2010

  • 93

    Sibley CT, , Vavere AL, , Gottlieb I, , Cox C, , Matheson M, & Spooner A, et al.: MRI-measured regression of carotid atherosclerosis induced by statins with and without niacin in a randomised controlled trial: the NIA plaque study. Heart 99:16751680, 2013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 94

    Silvera SS, , Aidi HE, , Rudd JH, , Mani V, , Yang L, & Farkouh M, et al.: Multimodality imaging of atherosclerotic plaque activity and composition using FDG-PET/CT and MRI in carotid and femoral arteries. Atherosclerosis 207:139143, 2009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 95

    Singh AS, , Atam V, , Jain N, , Yathish BE, , Patil MR, & Das L: Association of carotid plaque echogenicity with recurrence of ischemic stroke. N Am J Med Sci 5:371376, 2013

  • 96

    Singh N, , Moody AR, , Gladstone DJ, , Leung G, , Ravikumar R, & Zhan J, et al.: Moderate carotid artery stenosis: MR imaging-depicted intraplaque hemorrhage predicts risk of cerebrovascular ischemic events in asymptomatic men. Radiology 252:502508, 2009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 97

    Spence JD, , Tamayo A, , Lownie SP, , Ng WP, & Ferguson GG: Absence of microemboli on transcranial Doppler identifies low-risk patients with asymptomatic carotid stenosis. Stroke 36:23732378, 2005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 98

    Spencer MP, , Thomas GI, , Nicholls SC, & Sauvage LR: Detection of middle cerebral artery emboli during carotid endarterectomy using transcranial Doppler ultrasonography. Stroke 21:415423, 1990

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 99

    Stary HC, , Blankenhorn DH, , Chandler AB, , Glagov S, , Insull W Jr, & Richardson M, et al.: A definition of the intima of human arteries and of its atherosclerosis-prone regions. Circulation 85:391405, 1992

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 100

    Stary HC, , Chandler AB, , Dinsmore RE, , Fuster V, , Glagov S, & Insull W Jr, et al.: A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. Circulation 92:13551374, 1995

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 101

    Stary HC, , Chandler AB, , Glagov S, , Guyton JR, , Insull W Jr, & Rosenfeld ME, et al.: A definition of initial, fatty streak, and intermediate lesions of atherosclerosis. Circulation 89:24622478, 1994

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 102

    Staub D, , Patel MB, , Tibrewala A, , Ludden D, , Johnson M, & Espinosa P, et al.: Vasa vasorum and plaque neovascularization on contrast-enhanced carotid ultrasound imaging correlates with cardiovascular disease and past cardiovascular events. Stroke 41:4147, 2010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 103

    Steinberg D, & Witztum JL: Lipoproteins and atherogenesis. Current concepts JAMA 264:30473052, 1990

  • 104

    Tahara N, , Kai H, , Ishibashi M, , Nakaura H, , Kaida H, & Baba K, et al.: Simvastatin attenuates plaque inflammation: evaluation by fluorodeoxyglucose positron emission tomography. J Am Coll Cardiol 48:18251831, 2006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 105

    Tawakol A, , Fayad ZA, , Mogg R, , Alon A, , Klimas MT, & Dansky H, et al.: Intensification of statin therapy results in a rapid reduction in atherosclerotic inflammation: results of a multicenter fluorodeoxyglucose-positron emission tomography/computed tomography feasibility study. J Am Coll Cardiol 62:909917, 2013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 106

    Tawakol A, , Migrino RQ, , Bashian GG, , Bedri S, , Vermylen D, & Cury RC, et al.: In vivo 18F-fluorodeoxyglucose positron emission tomography imaging provides a noninvasive measure of carotid plaque inflammation in patients. J Am Coll Cardiol 48:18181824, 2006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 107

    ten Kate GL, , Renaud GG, , Akkus Z, , van den Oord SC, , ten Cate FJ, & Shamdasani V, et al.: Far-wall pseudoenhancement during contrast-enhanced ultrasound of the carotid arteries: clinical description and in vitro reproduction. Ultrasound Med Biol 38:593600, 2012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 108

    ten Kate GL, , van den Oord SC, , Sijbrands EJ, , van der Lugt A, , de Jong N, & Bosch JG, et al.: Current status and future developments of contrast-enhanced ultrasound of carotid atherosclerosis. J Vasc Surg 57:539546, 2013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 109

    ten Kate GL, , van Dijk AC, , van den Oord SC, , Hussain B, , Verhagen HJ, & Sijbrands EJ, et al.: Usefulness of contrastenhanced ultrasound for detection of carotid plaque ulceration in patients with symptomatic carotid atherosclerosis. Am J Cardiol 112:292298, 2013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 110

    Topakian R, , King A, , Kwon SU, , Schaafsma A, , Shipley M, & Markus HS: Ultrasonic plaque echolucency and emboli signals predict stroke in asymptomatic carotid stenosis. Neurology 77:751758, 2011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 111

    Truijman MT, , Kwee RM, , van Hoof RH, , Hermeling E, , van Oostenbrugge RJ, & Mess WH, et al.: Combined 18F-FDG PET-CT and DCE-MRI to assess inflammation and microvascularization in atherosclerotic plaques. Stroke 44:35683570, 2013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 112

    Underhill HR, , Yuan C, , Zhao XQ, , Kraiss LW, , Parker DL, & Saam T, et al.: Effect of rosuvastatin therapy on carotid plaque morphology and composition in moderately hypercholesterolemic patients: a high-resolution magnetic resonance imaging trial. Am Heart J 155:584.e1584.e8, 2008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 113

    van Gils MJ, , Vukadinovic D, , van Dijk AC, , Dippel DW, , Niessen WJ, & van der Lugt A: Carotid atherosclerotic plaque progression and change in plaque composition over time: a 5-year follow-up study using serial CT angiography. AJNR Am J Neuroradiol 33:12671273, 2012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 114

    van Zuilen EV, , Moll FL, , Vermeulen FE, , Mauser HW, , van Gijn J, & Ackerstaff RG: Detection of cerebral microemboli by means of transcranial Doppler monitoring before and after carotid endarterectomy. Stroke 26:210213, 1995

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 115

    Vavuranakis M, , Sigala F, , Vrachatis DA, , Papaioannou TG, , Filis K, & Kavantzas N, et al.: Quantitative analysis of carotid plaque vasa vasorum by CEUS and correlation with histology after endarterectomy. Vasa 42:184195, 2013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 116

    Walker MD, , Marler JR, , Goldstein M, , Grady PA, , Toole JF, & Baker WF, et al.: Endarterectomy for asymptomatic carotid artery stenosis. JAMA 273:14211428, 1995

  • 117

    Watanabe Y, & Nagayama M: MR plaque imaging of the carotid artery. Neuroradiology 52:253274, 2010

  • 118

    Watanabe Y, , Nagayama M, , Suga T, , Yoshida K, , Yamagata S, & Okumura A, et al.: Characterization of atherosclerotic plaque of carotid arteries with histopathological correlation: vascular wall MR imaging vs color Doppler ultrasonography (US). J Magn Reson Imaging 28:478485, 2008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 119

    Wilhjelm JE, , Jensen MS, , Jespersen SK, , Sahl B, & Falk E: Visual and quantitative evaluation of selected image combination schemes in ultrasound spatial compound scanning. IEEE Trans Med Imaging 23:181190, 2004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 120

    Wintermark M, , Arora S, , Tong E, , Vittinghoff E, , Lau BC, & Chien JD, et al.: Carotid plaque computed tomography imaging in stroke and nonstroke patients. Ann Neurol 64:149157, 2008

  • 121

    Wintermark M, , Jawadi SS, , Rapp JH, , Tihan T, , Tong E, & Glidden DV, et al.: High-resolution CT imaging of carotid artery atherosclerotic plaques. AJNR Am J Neuroradiol 29:875882, 2008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 122

    Xiong L, , Deng YB, , Zhu Y, , Liu YN, & Bi XJ: Correlation of carotid plaque neovascularization detected by using contrast-enhanced US with clinical symptoms. Radiology 251:583589, 2009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 123

    Yim YJ, , Choe YH, , Ko Y, , Kim ST, , Kim KH, & Jeon P, et al.: High signal intensity halo around the carotid artery on maximum intensity projection images of time-of-flight MR angiography: a new sign for intraplaque hemorrhage. J Magn Reson Imaging 27:13411346, 2008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 124

    Yoshida K, , Sadamasa N, , Narumi O, , Chin M, , Yamagata S, & Miyamoto S: Symptomatic low-grade carotid stenosis with intraplaque hemorrhage and expansive arterial remodeling is associated with a high relapse rate refractory to medical treatment. Neurosurgery 70:11431151, 2012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 125

    Yoshimura S, , Yamada K, , Kawasaki M, , Asano T, , Kanematsu M, & Miyai M, et al.: Selection of carotid artery stenting or endarterectomy based on magnetic resonance plaque imaging reduced periprocedural adverse events. J Stroke Cerebrovasc Dis 22:10821087, 2013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 126

    Yoshimura S, , Yamada K, , Kawasaki M, , Asano T, , Kanematsu M, & Takamatsu M, et al.: High-intensity signal on time-of-flight magnetic resonance angiography indicates carotid plaques at high risk for cerebral embolism during stenting. Stroke 42:31323137, 2011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 127

    Yuan C, , Mitsumori LM, , Ferguson MS, , Polissar NL, , Echelard D, & Ortiz G, et al.: In vivo accuracy of multispectral magnetic resonance imaging for identifying lipid-rich necrotic cores and intraplaque hemorrhage in advanced human carotid plaques. Circulation 104:20512056, 2001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 128

    Zhao XQ, , Dong L, , Hatsukami T, , Phan BA, , Chu B, & Moore A, et al.: MR imaging of carotid plaque composition during lipid-lowering therapy a prospective assessment of effect and time course. JACC Cardiovasc Imaging 4:977986, 2011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 129

    Zhou Y, , Xing Y, , Li Y, , Bai Y, , Chen Y, & Sun X, et al.: An assessment of the vulnerability of carotid plaques: a comparative study between intraplaque neovascularization and plaque echogenicity. BMC Med Imaging 13:13, 2013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 130

    Zhu Y, , Deng YB, , Liu YN, , Bi XJ, , Sun J, & Tang QY, et al.: Use of carotid plaque neovascularization at contrastenhanced US to predict coronary events in patients with coronary artery disease. Radiology 268:5460, 2013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 1288 1288 487
Full Text Views 13394 1641 40
PDF Downloads 12035 2046 31
EPUB Downloads 0 0 0