Low-energy extracorporeal shock wave therapy promotes vascular endothelial growth factor expression and improves locomotor recovery after spinal cord injury

Laboratory investigation

Seiji Yamaya Departments of Orthopaedic Surgery and

Search for other papers by Seiji Yamaya in
Current site
Google Scholar
PubMed
Close
 M.D.
,
Hiroshi Ozawa Departments of Orthopaedic Surgery and

Search for other papers by Hiroshi Ozawa in
Current site
Google Scholar
PubMed
Close
 M.D., Ph.D.
,
Haruo Kanno Departments of Orthopaedic Surgery and

Search for other papers by Haruo Kanno in
Current site
Google Scholar
PubMed
Close
 M.D., Ph.D.
,
Koshi N. Kishimoto Departments of Orthopaedic Surgery and

Search for other papers by Koshi N. Kishimoto in
Current site
Google Scholar
PubMed
Close
 M.D., Ph.D.
,
Akira Sekiguchi Departments of Orthopaedic Surgery and

Search for other papers by Akira Sekiguchi in
Current site
Google Scholar
PubMed
Close
 M.D., Ph.D.
,
Satoshi Tateda Departments of Orthopaedic Surgery and

Search for other papers by Satoshi Tateda in
Current site
Google Scholar
PubMed
Close
 M.D.
,
Kenichiro Yahata Departments of Orthopaedic Surgery and

Search for other papers by Kenichiro Yahata in
Current site
Google Scholar
PubMed
Close
 M.D.
,
Kenta Ito Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan

Search for other papers by Kenta Ito in
Current site
Google Scholar
PubMed
Close
 M.D., Ph.D.
,
Hiroaki Shimokawa Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan

Search for other papers by Hiroaki Shimokawa in
Current site
Google Scholar
PubMed
Close
 M.D., Ph.D.
, and
Eiji Itoi Departments of Orthopaedic Surgery and

Search for other papers by Eiji Itoi in
Current site
Google Scholar
PubMed
Close
 M.D., Ph.D.
Restricted access

Purchase Now

USD  $45.00

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $525.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $624.00
USD  $45.00
USD  $525.00
USD  $624.00
Print or Print + Online Sign in

Object

Extracorporeal shock wave therapy (ESWT) is widely used for the clinical treatment of various human diseases. Recent studies have demonstrated that low-energy ESWT upregulates the expression of vascular endothelial growth factor (VEGF) and promotes angiogenesis and functional recovery in myocardial infarction and peripheral artery disease. Many previous reports suggested that VEGF produces a neuroprotective effect to reduce secondary neural tissue damage after spinal cord injury (SCI). The purpose of the present study was to investigate whether lowenergy ESWT promotes VEGF expression and neuroprotection and improves locomotor recovery after SCI.

Methods

Sixty adult female Sprague-Dawley rats were randomly divided into 4 groups: sham group (laminectomy only), sham-SW group (low-energy ESWT applied after laminectomy), SCI group (SCI only), and SCI-SW group (low-energy ESWT applied after SCI). Thoracic spinal cord contusion injury was inflicted using an impactor. Low-energy ESWT was applied to the injured spinal cord 3 times a week for 3 weeks. Locomotor function was evaluated using the Basso, Beattie, and Bresnahan (BBB) Scale (open field locomotor score) at different time points over 42 days after SCI. Hematoxylin and eosin staining was performed to assess neural tissue damage in the spinal cord. Neuronal loss was investigated by immunostaining for NeuN. The mRNA expressions of VEGF and its receptor, Flt-1, in the spinal cord were assessed using real-time polymerase chain reaction. Immunostaining for VEGF was performed to evaluate VEGF protein expression in the spinal cord.

Results

In both the sham and sham-SW groups, no animals showed locomotor impairment on BBB scoring. Histological analysis of H & E and NeuN stainings in the sham-SW group confirmed that no neural tissue damage was induced by the low-energy ESWT. Importantly, animals in the SCI-SW group demonstrated significantly better locomotor improvement than those in the SCI group at 7, 35, and 42 days after injury (p < 0.05). The number of NeuN-positive cells in the SCI-SW group was significantly higher than that in the SCI group at 42 days after injury (p < 0.05). In addition, mRNA expressions of VEGF and Flt-1 were significantly increased in the SCI-SW group compared with the SCI group at 7 days after injury (p < 0.05). The expression of VEGF protein in the SCI-SW group was significantly higher than that in the SCI group at 7 days (p < 0.01).

Conclusions

The present study showed that low-energy ESWT significantly increased expressions of VEGF and Flt-1 in the spinal cord without any detrimental effect. Furthermore, it significantly reduced neuronal loss in damaged neural tissue and improved locomotor function after SCI. These results suggested that low-energy ESWT enhances the neuroprotective effect of VEGF in reducing secondary injury and leads to better locomotor recovery following SCI. This study provides the first evidence that low-energy ESWT can be a safe and promising therapeutic strategy for SCI.

Abbreviations used in this paper:

BBB = Basso, Beattie, Bresnahan; ESWT = extracorporeal shock wave therapy; HUVEC = human umbilical vein endothelial cell; NO = nitric oxide; PBS = phosphate-buffered saline; RT-PCR = real-time polymerase chain reaction; SCI = spinal cord injury; VEGF = vascular endothelial growth factor.
  • Collapse
  • Expand
  • 1

    Al-Abbad H, & Simon JV: The effectiveness of extracorporeal shock wave therapy on chronic Achilles tendinopathy: a systematic review. Foot Ankle Int 34:3341, 2013

  • 2

    Apfel RE: Acoustic cavitation: a possible consequence of biomedical uses of ultrasound. Br J Cancer Suppl 5:140146, 1982

  • 3

    Bartholdi D, , Rubin BP, & Schwab ME: VEGF mRNA induction correlates with changes in the vascular architecture upon spinal cord damage in the rat. Eur J Neurosci 9:25492560, 1997

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4

    Basso DM: Behavioral testing after spinal cord injury: congruities, complexities, and controversies. J Neurotrauma 21:395404, 2004

  • 5

    Basso DM, , Beattie MS, & Bresnahan JC: A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma 12:121, 1995

  • 6

    Brockington A, , Lewis C, , Wharton S, & Shaw PJ: Vascular endothelial growth factor and the nervous system. Neuropathol Appl Neurobiol 30:427446, 2004

  • 7

    Cacchio A, , Giordano L, , Colafarina O, , Rompe JD, , Tavernese E, & Ioppolo F, et al.: Extracorporeal shock-wave therapy compared with surgery for hypertrophic long-bone nonunions. J Bone Joint Surg Am 91:25892597, 2009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8

    Chen YJ, , Wurtz T, , Wang CJ, , Kuo YR, , Yang KD, & Huang HC, et al.: Recruitment of mesenchymal stem cells and expression of TGF-beta 1 and VEGF in the early stage of shock wavepromoted bone regeneration of segmental defect in rats. J Orthop Res 22:526534, 2004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9

    Ciampa AR, , de Prati AC, , Amelio E, , Cavalieri E, , Persichini T, & Colasanti M, et al.: Nitric oxide mediates anti-inflammatory action of extracorporeal shock waves. FEBS Lett 579:68396845, 2005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10

    Connolly DT, , Olander JV, , Heuvelman D, , Nelson R, , Monsell R, & Siegel N, et al.: Human vascular permeability factor. Isolation from U937 cells. J Biol Chem 264:2001720024, 1989

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11

    Facchiano F, , Fernandez E, , Mancarella S, , Maira G, , Miscusi M, & D'Arcangelo D, et al.: Promotion of regeneration of corticospinal tract axons in rats with recombinant vascular endothelial growth factor alone and combined with adenovirus coding for this factor. J Neurosurg 97:161168, 2002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12

    Ferrara N, , Gerber HP, & LeCouter J: The biology of VEGF and its receptors. Nat Med 9:669676, 2003

  • 13

    Fisher AB, , Chien S, , Barakat AI, & Nerem RM: Endothelial cellular response to altered shear stress. Am J Physiol Lung Cell Mol Physiol 281:L529L533, 2001

  • 14

    Fuchs GJ, , David RD, & Fuchs AM: [Complications of extracorporeal shockwave lithotripsy]. Arch Esp Urol 42:Suppl 1 8389, 1989. (Span)

  • 15

    Fukumoto Y, , Ito A, , Uwatoku T, , Matoba T, , Kishi T, & Tanaka H, et al.: Extracorporeal cardiac shock wave therapy ameliorates myocardial ischemia in patients with severe coronary artery disease. Coron Artery Dis 17:6370, 2006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16

    Gotte G, , Amelio E, , Russo S, , Marlinghaus E, , Musci G, & Suzuki H: Short-time non-enzymatic nitric oxide synthesis from L-arginine and hydrogen peroxide induced by shock waves treatment. FEBS Lett 520:153155, 2002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17

    Greenberg DA, & Jin K: From angiogenesis to neuropathology. Nature 438:954959, 2005

  • 18

    Gruner JA: A monitored contusion model of spinal cord injury in the rat. J Neurotrauma 9:123128, 1992

  • 19

    Haupt G: Use of extracorporeal shock waves in the treatment of pseudarthrosis, tendinopathy and other orthopedic diseases. J Urol 158:411, 1997

  • 20

    Hayashi D, , Kawakami K, , Ito K, , Ishii K, , Tanno H, & Imai Y, et al.: Low-energy extracorporeal shock wave therapy enhances skin wound healing in diabetic mice: a critical role of endothelial nitric oxide synthase. Wound Repair Regen 20:887895, 2012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21

    Herrera JJ, , Nesic O, & Narayana PA: Reduced vascular endothelial growth factor expression in contusive spinal cord injury. J Neurotrauma 26:9951003, 2009

  • 22

    Ito K, , Fukumoto Y, & Shimokawa H: Extracorporeal shock wave therapy as a new and non-invasive angiogenic strategy. Tohoku J Exp Med 219:19, 2009

  • 23

    Ito K, , Fukumoto Y, & Shimokawa H: Extracorporeal shock wave therapy for ischemic cardiovascular disorders. Am J Cardiovasc Drugs 11:295302, 2011

  • 24

    Ito Y, , Ito K, , Shiroto T, , Tsuburaya R, , Yi GJ, & Takeda M, et al.: Cardiac shock wave therapy ameliorates left ventricular remodeling after myocardial ischemia-reperfusion injury in pigs in vivo. Coron Artery Dis 21:304311, 2010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25

    Karatas A, , Dosoglu M, , Zeyrek T, , Kayikci A, , Erol A, & Can B: The effect of extracorporeal shock wave lithotripsy on the rat spinal cord. Spinal Cord 46:627632, 2008

  • 26

    Karimi-Abdolrezaee S, , Eftekharpour E, , Wang J, , Schut D, & Fehlings MG: Synergistic effects of transplanted adult neural stem/progenitor cells, chondroitinase, and growth factors promote functional repair and plasticity of the chronically injured spinal cord. J Neurosci 30:16571676, 2010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27

    Kato K, , Fujimura M, , Nakagawa A, , Saito A, , Ohki T, & Takayama K, et al.: Pressure-dependent effect of shock waves on rat brain: induction of neuronal apoptosis mediated by a caspasedependent pathway. J Neurosurg 106:667676, 2007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28

    Kikuchi Y, , Ito K, , Ito Y, , Shiroto T, , Tsuburaya R, & Aizawa K, et al.: Double-blind and placebo-controlled study of the effectiveness and safety of extracorporeal cardiac shock wave therapy for severe angina pectoris. Circ J 74:589591, 2010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29

    Kishimoto KN, , Oxford CL, & Reddi AH: Stimulation of the side population fraction of ATDC5 chondroprogenitors by hypoxia. Cell Biol Int 33:12221229, 2009

  • 30

    Lee TC, , Huang HY, , Yang YL, , Hung KS, , Cheng CH, & Chang NK, et al.: Vulnerability of the spinal cord to injury from extracorporeal shock waves in rabbits. J Clin Neurosci 14:873878, 2007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31

    Leung DW, , Cachianes G, , Kuang WJ, , Goeddel DV, & Ferrara N: Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246:13061309, 1989

  • 32

    Liu Y, , Figley S, , Spratt SK, , Lee G, , Ando D, & Surosky R, et al.: An engineered transcription factor which activates VEGF-A enhances recovery after spinal cord injury. Neurobiol Dis 37:384393, 2010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33

    Luo Z, , Diaco M, , Murohara T, , Ferrara N, , Isner JM, & Symes JF: Vascular endothelial growth factor attenuates myocardial ischemia-reperfusion injury. Ann Thorac Surg 64:993998, 1997

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34

    Mariotto S, , Cavalieri E, , Amelio E, , Ciampa AR, , de Prati AC, & Marlinghaus E, et al.: Extracorporeal shock waves: from lithotripsy to anti-inflammatory action by NO production. Nitric Oxide 12:8996, 2005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35

    Mariotto S, , de Prati AC, , Cavalieri E, , Amelio E, , Marlinghaus E, & Suzuki H: Extracorporeal shock wave therapy in inflammatory diseases: molecular mechanism that triggers antiinflammatory action. Curr Med Chem 16:23662372, 2009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36

    Nakagawa A, , Manley GT, , Gean AD, , Ohtani K, , Armonda R, & Tsukamoto A, et al.: Mechanisms of primary blast-induced traumatic brain injury: insights from shock-wave research. J Neurotrauma 28:11011119, 2011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37

    Nishida T, , Shimokawa H, , Oi K, , Tatewaki H, , Uwatoku T, & Abe K, et al.: Extracorporeal cardiac shock wave therapy markedly ameliorates ischemia-induced myocardial dysfunction in pigs in vivo. Circulation 110:30553061, 2004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38

    Ogunshola OO, , Antic A, , Donoghue MJ, , Fan SY, , Kim H, & Stewart WB, et al.: Paracrine and autocrine functions of neuronal vascular endothelial growth factor (VEGF) in the central nervous system. J Biol Chem 277:1141011415, 2002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39

    Oi K, , Fukumoto Y, , Ito K, , Uwatoku T, , Abe K, & Hizume T, et al.: Extracorporeal shock wave therapy ameliorates hindlimb ischemia in rabbits. Tohoku J Exp Med 214:151158, 2008

  • 40

    Oosthuyse B, , Moons L, , Storkebaum E, , Beck H, , Nuyens D, & Brusselmans K, et al.: Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter causes motor neuron degeneration. Nat Genet 28:131138, 2001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41

    Pan PJ, , Chou CL, , Chiou HJ, , Ma HL, , Lee HC, & Chan RC: Extracorporeal shock wave therapy for chronic calcific tendinitis of the shoulders: a functional and sonographic study. Arch Phys Med Rehabil 84:988993, 2003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42

    Rompe JD, , Kirkpatrick CJ, , Küllmer K, , Schwitalle M, & Krischek O: Dose-related effects of shock waves on rabbit tendo Achillis. A sonographic and histological study. J Bone Joint Surg Br 80:546552, 1998

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43

    Rompe JD, , Meurer A, , Nafe B, , Hofmann A, & Gerdesmeyer L: Repetitive low-energy shock wave application without local anesthesia is more efficient than repetitive low-energy shock wave application with local anesthesia in the treatment of chronic plantar fasciitis. J Orthop Res 23:931941, 2005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44

    Rosenstein JM, & Krum JM: New roles for VEGF in nervous tissue—beyond blood vessels. Exp Neurol 187:246253, 2004

  • 45

    Salem S, , Mehrsai A, , Zartab H, , Shahdadi N, & Pourmand G: Complications and outcomes following extracorporeal shock wave lithotripsy: a prospective study of 3,241 patients. Urol Res 38:135142, 2010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46

    Savas S, , Savas C, , Altuntas I, & Adiloglu A: The correlation between nitric oxide and vascular endothelial growth factor in spinal cord injury. Spinal Cord 46:113117, 2008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47

    Seidl M, , Steinbach P, , Wörle K, & Hofstädter F: Induction of stress fibres and intercellular gaps in human vascular endothelium by shock-waves. Ultrasonics 32:397400, 1994

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48

    Senger DR, , Galli SJ, , Dvorak AM, , Perruzzi CA, , Harvey VS, & Dvorak HF: Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219:983985, 1983

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49

    Serizawa F, , Ito K, , Kawamura K, , Tsuchida K, , Hamada Y, & Zukeran T, et al.: Extracorporeal shock wave therapy improves the walking ability of patients with peripheral artery disease and intermittent claudication. Circ J 76:14861493, 2012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50

    Serizawa F, , Ito K, , Matsubara M, , Sato A, , Shimokawa H, & Satomi S: Extracorporeal shock wave therapy induces therapeutic lymphangiogenesis in a rat model of secondary lymphoedema. Eur J Vasc Endovasc Surg 42:254260, 2011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51

    Stojadinovic A, , Elster EA, , Anam K, , Tadaki D, , Amare M, & Zins S, et al.: Angiogenic response to extracorporeal shock wave treatment in murine skin isografts. Angiogenesis 11:369380, 2008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52

    Svensson B, , Peters M, , König HG, , Poppe M, , Levkau B, & Rothermundt M, et al.: Vascular endothelial growth factor protects cultured rat hippocampal neurons against hypoxic injury via an antiexcitotoxic, caspase-independent mechanism. J Cereb Blood Flow Metab 22:11701175, 2002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53

    Tator CH, & Fehlings MG: Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms. J Neurosurg 75:1526, 1991

  • 54

    Uwatoku T, , Ito K, , Abe K, , Oi K, , Hizume T, & Sunagawa K, et al.: Extracorporeal cardiac shock wave therapy improves left ventricular remodeling after acute myocardial infarction in pigs. Coron Artery Dis 18:397404, 2007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55

    Valchanou VD, & Michailov P: High energy shock waves in the treatment of delayed and nonunion of fractures. Int Orthop 15:181184, 1991

  • 56

    Vaquero J, , Zurita M, , de Oya S, & Coca S: Vascular endothelial growth/permeability factor in spinal cord injury. J Neurosurg 90:2 Suppl 220223, 1999

  • 57

    Wang CJ, , Wang FS, , Yang KD, , Weng LH, , Hsu CC, & Huang CS, et al.: Shock wave therapy induces neovascularization at the tendon-bone junction. A study in rabbits. J Orthop Res 21:984989, 2003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58

    Wang FS, , Wang CJ, , Huang HJ, , Chung H, , Chen RF, & Yang KD: Physical shock wave mediates membrane hyperpolarization and Ras activation for osteogenesis in human bone marrow stromal cells. Biochem Biophys Res Commun 287:648655, 2001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59

    Wang FS, , Yang KD, , Kuo YR, , Wang CJ, , Sheen-Chen SM, & Huang HC, et al.: Temporal and spatial expression of bone morphogenetic proteins in extracorporeal shock wave-promoted healing of segmental defect. Bone 32:387396, 2003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 60

    Widenfalk J, , Lipson A, , Jubran M, , Hofstetter C, , Ebendal T, & Cao Y, et al.: Vascular endothelial growth factor improves functional outcome and decreases secondary degeneration in experimental spinal cord contusion injury. Neuroscience 120:951960, 2003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 61

    Yan X, , Zeng B, , Chai Y, , Luo C, & Li X: Improvement of blood flow, expression of nitric oxide, and vascular endothelial growth factor by low-energy shockwave therapy in randompattern skin flap model. Ann Plast Surg 61:646653, 2008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 62

    Zachary I: Neuroprotective role of vascular endothelial growth factor: signalling mechanisms, biological function, and therapeutic potential. Neurosignals 14:207221, 2005

Metrics

All Time Past Year Past 30 Days
Abstract Views 2361 710 65
Full Text Views 452 34 5
PDF Downloads 258 31 6
EPUB Downloads 0 0 0