The collagenic architecture of human dura mater

Laboratory investigation

Marina Protasoni Departments of Human Morphology and

Search for other papers by Marina Protasoni in
Current site
Google Scholar
PubMed
Close
 M.D., Ph.D.
,
Simone Sangiorgi Surgery, Neurosurgical Unit, University of Insubria, Varese, Italy

Search for other papers by Simone Sangiorgi in
Current site
Google Scholar
PubMed
Close
 M.D., Ph.D.
,
Andrea Cividini Surgery, Neurosurgical Unit, University of Insubria, Varese, Italy

Search for other papers by Andrea Cividini in
Current site
Google Scholar
PubMed
Close
 M.D.
,
Gloria Tiffany Culuvaris Departments of Human Morphology and

Search for other papers by Gloria Tiffany Culuvaris in
Current site
Google Scholar
PubMed
Close
 M.D.
,
Giustino Tomei Surgery, Neurosurgical Unit, University of Insubria, Varese, Italy

Search for other papers by Giustino Tomei in
Current site
Google Scholar
PubMed
Close
 M.D.
,
Carlo Dell'Orbo Departments of Human Morphology and

Search for other papers by Carlo Dell'Orbo in
Current site
Google Scholar
PubMed
Close
 M.D.
,
Mario Raspanti Departments of Human Morphology and

Search for other papers by Mario Raspanti in
Current site
Google Scholar
PubMed
Close
 B.D.
,
Sergio Balbi Surgery, Neurosurgical Unit, University of Insubria, Varese, Italy

Search for other papers by Sergio Balbi in
Current site
Google Scholar
PubMed
Close
 M.D.
, and
Marcella Reguzzoni Departments of Human Morphology and

Search for other papers by Marcella Reguzzoni in
Current site
Google Scholar
PubMed
Close
 B.D.
Restricted access

Purchase Now

USD  $45.00

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $525.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $624.00
USD  $45.00
USD  $525.00
USD  $624.00
Print or Print + Online Sign in

Object

Human dura mater is the most external meningeal sheet surrounding the CNS. It provides an efficient protection to intracranial structures and represents the most important site for CSF turnover. Its intrinsic architecture is made up of fibrous tissue including collagenic and elastic fibers that guarantee the maintenance of its biophysical features. The recent technical advances in the repair of dural defects have allowed for the creation of many synthetic and biological grafts. However, no detailed studies on the 3D microscopic disposition of collagenic fibers in dura mater are available. The authors report on the collagenic 3D architecture of normal dura mater highlighting the orientation, disposition in 3 dimensions, and shape of the collagen fibers with respect to the observed layer.

Methods

Thirty-two dura mater specimens were collected during cranial decompressive surgical procedures, fixed in 2.5% Karnovsky solution, and digested in 1 N NaOH solution. After a routine procedure, the specimens were observed using a scanning electron microscope.

Results

The authors distinguished the following 5 layers in the fibrous dura mater of varying thicknesses, orientation, and structures: bone surface, external median, vascular, internal median, and arachnoid layers.

Conclusions

The description of the ultrastructural 3D organization of the different layers of dura mater will give us more information for the creation of synthetic grafts that are as similar as possible to normal dura mater. This description will be also related to the study of the neoplastic invasion.

  • Collapse
  • Expand
  • 1

    Alcolado R, , Weller RO, , Parrish EP, & Garrod D: The cranial arachnoid and pia mater in man: anatomical and ultrastructural observations. Neuropathol Appl Neurobiol 14:117, 1988

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2

    Barbolt TA, , Odin M, , Léger M, , Kangas L, , Hoiste J, & Liu SH: Biocompatibility evaluation of dura mater substitutes in an animal model. Neurol Res 23:813820, 2001

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3

    Benini A, & Bonar SK: Andreas Vesalius 1514–1564. Spine 21:13881393, 1996

  • 4

    Biroli F, , Fusco M, , Bani GG, , Signorelli A, , Esposito F, & de Divitiis O, et al.: Novel equine collagen-only dural substitute. Neurosurgery 62:3 Suppl 1 273274, 2008

  • 5

    Chaplin JM, , Costantino PD, , Wolpoe ME, , Bederson JB, , Griffey ES, & Zhang WX: Use of an acellular dermal allograft for dural replacement: an experimental study. Neurosurgery 45:320327, 1999

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6

    Collins RL, , Christiansen D, , Zazanis GA, & Silver FH: Use of collagen film as a dural substitute: preliminary animal studies. J Biomed Mater Res 25:267276, 1991

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7

    Conegero CI, & Chopard RP: Tridimensional architecture of the collagen element in the arachnoid granulation in humans: a study on scanning electron microscopy. Arq Neuropsiquiatr 61:561565, 2003

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8

    Costantino PD, , Wolpoe ME, , Govindaraj S, , Chaplin JM, , Sen C, & Cohen M, et al.: Human dural replacement with acellular dermis: clinical results and a review of the literature. Head Neck 22:765771, 2000

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9

    Fricke B, , Andres KH, & Von Düring M: Nerve fibers innervating the cranial and spinal meninges: morphology of nerve fiber terminals and their structural integration. Microsc Res Tech 53:96105, 2001

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10

    Gök A, , Zorludemir S, , Polat S, , Tap O, & Kaya M: Experimental evaluation of peritoneum and pericardium as dural substitutes. Res Exp Med (Berl) 195:3138, 1995

  • 11

    Knopp U, , Christmann F, , Reusche E, & Sepehrnia A: A new collagen biomatrix of equine origin versus a cadaveric dura graft for the repair of dural defects—a comparative animal experimental study. Acta Neurochir (Wien) 147:877887, 2005

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12

    Laquerriere A, , Yun J, , Tiollier J, , Hemet J, & Tadie M: Experimental evaluation of bilayered human collagen as a dural substitute. J Neurosurg 78:487491, 1993

  • 13

    Maher CO, , Anderson RE, , McClelland RL, & Link MJ: Evaluation of a novel propylene oxide-treated collagen material as a dural substitute. J Neurosurg 99:10701076, 2003

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14

    Manelli A, , Sangiorgi S, , Binaghi E, & Raspanti M: 3D analysis of SEM images of corrosion casting using adaptive stereo matching. Microsc Res Tech 70:350354, 2007

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15

    Meddings N, , Scott R, , Bullock R, , French DA, , Hide TA, & Gorham SD: Collagen vicryl—a new dural prosthesis. Acta Neurochir (Wien) 117:5358, 1992

  • 16

    Nabeshima S, , Reese TS, , Landis DM, & Brightman MW: Junctions in the meninges and marginal glia. J Comp Neurol 164:127169, 1975

  • 17

    Narotam PK, , José S, , Nathoo N, , Taylon C, & Vora Y: Collagen matrix (DuraGen) in dural repair: analysis of a new modified technique. Spine 29:28612869, 2004

  • 18

    Narotam PK, , Van Dellen JR, , Bhoola K, & Raidoo D: Experimental evaluation of collagen sponge as a dural graft. Br J Neurosurg 7:635641, 1993

  • 19

    Nordstrom MR, , Wang TD, & Neel HB III: Dura mater for soft-tissue augmentation. Evaluation in a rabbit model. Arch Otolaryngol Head Neck Surg 119:208214, 1993

  • 20

    Ohtani O: The maceration technique in scanning electron microscopy of collagen fiber frameworks: its application in the study of human livers. Arch Histol Cytol 55:Suppl 225232, 1992

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21

    Ohtani O: Three-dimensional organization of the connective tissue fibers of the human pancreas: a scanning electron microscopic study of NaOH treated-tissues. Arch Histol Jpn 50:557566, 1987

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22

    Ohtani O, , Ushiki T, , Taguchi T, & Kikuta A: Collagen fibrillar networks as skeletal frameworks: a demonstration by cell-maceration/scanning electron microscope method. Arch Histol Cytol 51:249261, 1988

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23

    Pease DC, & Schultz RL: Electron microscopy of rat cranial meninges. Am J Anat 102:301321, 1958

  • 24

    Runza M, , Pietrabissa R, , Mantero S, , Albani A, , Quaglini V, & Contro R: Lumbar dura mater biomechanics: experimental characterization and scanning electron microscopy observations. Anesth Analg 88:13171321, 1999

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25

    Sakas DE, , Charnvises K, , Borges LF, & Zervas NT: Biologically inert synthetic dural substitutes. Appraisal of a medical-grade aliphatic polyurethane and a polysiloxane-carbonate block copolymer. J Neurosurg 73:936941, 1990

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26

    Sangiorgi S, , Manelli A, , Dell'Orbo C, & Congiu T: A new method for the joint visualization of vascular structures and connective tissues: corrosion casting and 1 N NaOH maceration. Microsc Res Tech 69:919923, 2006

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27

    Sangiorgi S, , Manelli A, , Protasoni M, , Ronga M, & Raspanti M: The collagenic structure of human digital skin seen by scanning electron microscopy after Ohtani maceration technique. Ann Anat 187:1322, 2005

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28

    Shukla V, , Hayman LA, , Ly C, , Fuller G, & Taber KH: Adult cranial dura I: intrinsic vessels. J Comput Assist Tomogr 26:10691074, 2002

  • 29

    Shukla V, , Hayman LA, , Taber KH, , Fuller G, & Taber KH: Adult cranial dura II: venous sinuses and their extrameningeal contributions. J Comput Assist Tomogr 27:98102, 2003

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30

    Vandenabeele F, , Creemers J, & Lambrichts I: Ultrastructure of the human spinal arachnoid mater and dura mater. J Anat 189:417430, 1996

  • 31

    Viñas FC, , Ferris D, , Kupsky WJ, & Dujovny M: Evaluation of expanded polytetrafluoroethylene (ePTFE) versus polydioxanone (PDS) for the repair of dura mater defects. Neurol Res 21:262268, 1999

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32

    Warren WL, , Medary MB, , Dureza CD, , Bellotte JB, , Flannagan PP, & Oh MY, et al.: Dural repair using acellular human dermis: experience with 200 cases: technique assessment. Neurosurgery 46:13911396, 2000

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33

    Weller RO: Microscopic morphology and histology of the human meninges. Morphologie 89:2234, 2005

Metrics

All Time Past Year Past 30 Days
Abstract Views 3649 674 74
Full Text Views 906 148 40
PDF Downloads 588 116 17
EPUB Downloads 0 0 0