Transcranial magnetic stimulation and extradural electrodes implanted on secondary auditory cortex for tinnitus suppression

Clinical article

Restricted access

Object

Tinnitus is a prevalent symptom, with clinical, pathophysiological, and treatment features analogous to pain. Noninvasive transcranial magnetic stimulation (TMS) and intracranial auditory cortex stimulation (ACS) via implanted electrodes into the primary or overlying the secondary auditory cortex have been developed to treat severe cases of intractable tinnitus.

Methods

A series of 43 patients who benefited transiently from 2 separate placebo-controlled TMS sessions underwent implantation of auditory cortex electrodes. Targeting was based on blood oxygen level–dependent activation evoked by tinnitus-matched sound, using functional MR imaging–guided neuronavigation.

Results

Thirty-seven percent of the patients responded to ACS with tonic stimulation. Of the 63% who were nonresponders, half benefited from burst stimulation. In total, 33% remained unaffected by the ACS. The average tinnitus reduction was 53% for the entire group. Burst stimulation was capable of suppressing tinnitus in more patients and was better than tonic stimulation, especially for noise-like tinnitus. For pure tone tinnitus, there were no differences between the 2 stimulation designs. The average pure tone tinnitus improvement was 71% versus 37% for noise-like tinnitus and 29% for a combination of both pure tone and noise-like tinnitus. Transcranial magnetic stimulation did not predict response to ACS, but in ACS responders, a correlation (r = 0.38) between the amount of TMS and ACS existed. A patient's sex, age, or tinnitus duration did not influence treatment outcome.

Conclusions

Intracranial ACS might become a valuable treatment option for severe intractable tinnitus. Better understanding of the pathophysiological mechanisms of tinnitus, predictive functional imaging tests, new stimulation designs, and other stimulation targets are needed to improve ACS results.

Abbreviations used in this paper: ACS = auditory cortex stimulation; BOLD = blood oxygen level–dependent; fMR = functional MR; IPG = internal pulse generator; MEG = magnetoencephalography; TMS = transcranial magnetic stimulation.

Article Information

Address correspondence to: Sven Vanneste, M.Sc., M.A., Brai2n, Tinnitus Research Initiative, University Hospital Antwerp, Wilrijkstraat 10, 2650 Edegem, Belgium. email: sven.vanneste@ua.ac.be; website: http://www.brai2n.com.

Please include this information when citing this paper: published online January 14, 2011; DOI: 10.3171/2010.11.JNS10197.

© AANS, except where prohibited by US copyright law.

Headings

Figures

  • View in gallery

    A: Resting-state electroencephalography source localization demonstrating gamma (30–45 Hz) activity in the right auditory cortex in a patient with left-sided, 6000-Hz, pure tone tinnitus. B: A 3-T fMR image with BOLD activation evoked by tinnitus-matched sound presentation (6000 Hz) in the same patient in the right auditory cortex. C: Intraoperative photograph of the extradural electrode overlying the secondary auditory cortex. D: Postoperative radiographic image demonstrating location of the electrode.

  • View in gallery

    Graphic depictions of electrodes showing multiple (12) trial and error programming attempts with different stimulation designs due to recurrence of tinnitus. Each electrode demonstrates the poles selected that yield maximal tinnitus suppression. When 2 electrodes are shown adjacent to each other, 2 stimulation settings are programmed to run concurrently.

  • View in gallery

    A series of 3-T fMR images showing the BOLD response elicited by tinnitus-matched sound presentation in the MR imaging unit, with 3D, axial, coronal, and sagittal representations. Example of an fMR imaging session performed in a female patient with unilateral left-sided tinnitus at 5000 Hz (noise-like tinnitus).

  • View in gallery

    Dendrogram showing responders and nonresponders to tonic or burst stimulation delivered through an extradurally implanted electrode.

  • View in gallery

    Bar graph showing the amount of tinnitus suppression for responders to tonic stimulation and burst stimulation.

  • View in gallery

    Bar graph showing the amount of suppression for responders to tonic stimulation, burst stimulation after no response to tonic stimulation, and burst stimulation after response to tonic stimulation, respectively.

  • View in gallery

    Bar graph showing the amount of tinnitus suppression obtained in patients with electrode implants who responded to TMS after presenting with pure tone, narrowband noise, or combined pure tone and narrowband noise tinnitus, respectively.

  • View in gallery

    Bar graph showing the amount of tinnitus suppression obtained in patients with electrode implants who responded to TMS after presenting with unilateral and bilateral tinnitus, respectively.

  • View in gallery

    A: Postoperative CT scan demonstrating positioning of electrode. B: Preoperative 3-T fMR image demonstrating the BOLD activation evoked by tinnitus-matched sound presentation. The images were fused in the Stealth Neuronavigation Station. The crosshairs are overlying the same anatomical location, demonstrating correct positioning of the electrode.

References

  • 1

    Axelsson ARingdahl A: Tinnitus—a study of its prevalence and characteristics. Br J Audiol 23:53621989

  • 2

    Baguley DMPhillips JHumphriss RLJones SAxon PRMoffat DA: The prevalence and onset of gaze modulation of tinnitus and increased sensitivity to noise after translabyrinthine vestibular schwannoma excision. Otol Neurotol 27:2202242006

    • Search Google Scholar
    • Export Citation
  • 3

    Bartels HMiddel BLvan der Laan BFStaal MJAlbers FW: The additive effect of co-occurring anxiety and depression on health status, quality of life and coping strategies in helpseeking tinnitus sufferers. Ear Hear 29:9479562008

    • Search Google Scholar
    • Export Citation
  • 4

    Borst ATheunissen FE: Information theory and neural coding. Nat Neurosci 2:9479571999

  • 5

    Brookes GB: Vascular-decompression surgery for severe tinnitus. Am J Otol 17:5695761996

  • 6

    Brugge JFVolkov IOGarell PCReale RAHoward MA III: Functional connections between auditory cortex on Heschl's gyrus and on the lateral superior temporal gyrus in humans. J Neurophysiol 90:375037632003

    • Search Google Scholar
    • Export Citation
  • 7

    Crone NEBoatman DGordon BHao L: Induced electrocorticographic gamma activity during auditory perception. Brazier Award-winning article, 2001. Clin Neurophysiol 112:5655822001

    • Search Google Scholar
    • Export Citation
  • 8

    Crönlein TLangguth BGeisler PHajak G: Tinnitus and insomnia. Prog Brain Res 166:2272332007

  • 9

    De Ridder DDe Mulder GMenovsky TSunaert SKovacs S: Electrical stimulation of auditory and somatosensory cortices for treatment of tinnitus and pain. Prog Brain Res 166:3773882007

    • Search Google Scholar
    • Export Citation
  • 10

    De Ridder DDe Mulder GVerstraeten ESeidman MElisevich KSunaert S: Auditory cortex stimulation for tinnitus. Acta Neurochir Suppl 97:4514622007

    • Search Google Scholar
    • Export Citation
  • 11

    De Ridder DDe Mulder GVerstraeten EVan der Kelen KSunaert SSmits M: Primary and secondary auditory cortex stimulation for intractable tinnitus. ORL J Otorhinolaryngol Relat Spec 68:48552006

    • Search Google Scholar
    • Export Citation
  • 12

    De Ridder DDe Mulder GWalsh VMuggleton NSunaert SMøller A: Magnetic and electrical stimulation of the auditory cortex for intractable tinnitus. Case report. J Neurosurg 100:5605642004

    • Search Google Scholar
    • Export Citation
  • 13

    De Ridder DRyu HMøller ARNowé VVan de Heyning PVerlooy J: Functional anatomy of the human cochlear nerve and its role in microvascular decompressions for tinnitus. Neurosurgery 54:3813902004

    • Search Google Scholar
    • Export Citation
  • 14

    De Ridder Dvan der Loo EVan der Kelen KMenovsky Tvan de Heyning PMoller A: Do tonic and burst TMS modulate the lemniscal and extralemniscal system differentially?. Int J Med Sci 4:2422462007

    • Search Google Scholar
    • Export Citation
  • 15

    De Ridder Dvan der Loo EVan der Kelen KMenovsky Tvan de Heyning PMoller A: Theta, alpha and beta burst transcranial magnetic stimulation: brain modulation in tinnitus. Int J Med Sci 4:2372412007

    • Search Google Scholar
    • Export Citation
  • 16

    De Ridder DVan Laere KDupont PMenovsky TVan de Heyning P: Visualizing out-of-body experience in the brain. N Engl J Med 357:182918332007

    • Search Google Scholar
    • Export Citation
  • 17

    De Ridder DVanneste Svan der Loo EPlazier MMenovsky Tvan de Heyning P: Burst stimulation of the auditory cortex: a new form of neurostimulation for noise-like tinnitus suppression. Clinical article. J Neurosurg 112:128912942010

    • Search Google Scholar
    • Export Citation
  • 18

    De Ridder DVerstraeten EVan der Kelen KDe Mulder GSunaert SVerlooy J: Transcranial magnetic stimulation for tinnitus: influence of tinnitus duration on stimulation parameter choice and maximal tinnitus suppression. Otol Neurotol 26:6166192005

    • Search Google Scholar
    • Export Citation
  • 19

    Dobie RA: Depression and tinnitus. Otolaryngol Clin North Am 36:3833882003

  • 20

    Dobie RA: A review of randomized clinical trials in tinnitus. Laryngoscope 109:120212111999

  • 21

    Folmer RL: Lateralization of neural activity associated with tinnitus. Neuroradiology 49:6896912007

  • 22

    Friedland DRGaggl WRunge-Samuelson CUlmer JLKopell BH: Feasibility of auditory cortical stimulation for the treatment of tinnitus. Otol Neurotol 28:100510122007

    • Search Google Scholar
    • Export Citation
  • 23

    Goebel GHiller W: [The tinnitus questionnaire. A standard instrument for grading the degree of tinnitus. Results of a multicenter study with the tinnitus questionnaire.]. HNO 42:1661721994. (Ger)

    • Search Google Scholar
    • Export Citation
  • 24

    Hoffman HJReed GWEpidemiology of tinnitus. Snow JB Jr: Tinnitus: Theory and Management Hamilton, OntarioBC Decker2004. 1641

  • 25

    Howard MA III: Tinnitus and auditory cortex. J Neurosurg 101:1721722004. (Letter)

  • 26

    Jastreboff PJ: Phantom auditory perception (tinnitus): mechanisms of generation and perception. Neurosci Res 8:2212541990

  • 27

    Joliot MRibary ULlinás R: Human oscillatory brain activity near 40 Hz coexists with cognitive temporal binding. Proc Natl Acad Sci U S A 91:11748117511994

    • Search Google Scholar
    • Export Citation
  • 28

    Khedr EMRothwell JCAhmed MAEl-Atar A: Effect of daily repetitive transcranial magnetic stimulation for treatment of tinnitus: comparison of different stimulus frequencies. J Neurol Neurosurg Psychiatry 79:2122152008

    • Search Google Scholar
    • Export Citation
  • 29

    Khedr EMRothwell JCEl-Atar A: One-year follow up of patients with chronic tinnitus treated with left temporoparietal rTMS. Eur J Neurol 16:4044082009

    • Search Google Scholar
    • Export Citation
  • 30

    Kleinjung TSteffens TLondero ALangguth B: Transcranial magnetic stimulation (TMS) for treatment of chronic tinnitus: clinical effects. Prog Brain Res 166:3593672007

    • Search Google Scholar
    • Export Citation
  • 31

    Kleinjung TSteffens TSand PMurthum THajak GStrutz J: Which tinnitus patients benefit from transcranial magnetic stimulation?. Otolaryngol Head Neck Surg 137:5895952007

    • Search Google Scholar
    • Export Citation
  • 32

    Kovacs SPeeters RSmits MDe Ridder DVan Hecke PSunaert S: Activation of cortical and subcortical auditory structures at 3 T by means of a functional magnetic resonance imaging paradigm suitable for clinical use. Invest Radiol 41:87962006

    • Search Google Scholar
    • Export Citation
  • 33

    Langguth BEichhammer PKreutzer AMaenner PMarienhagen JKleinjung T: The impact of auditory cortex activity on characterizing and treating patients with chronic tinnitus—first results from a PET study. Acta Otolaryngol Suppl 556:84882006

    • Search Google Scholar
    • Export Citation
  • 34

    Lanting CPde Kleine Evan Dijk P: Neural activity underlying tinnitus generation: results from PET and fMRI. Hear Res 255:1132009

    • Search Google Scholar
    • Export Citation
  • 35

    Llinás RUrbano FJLeznik ERamírez RRvan Marle HJ: Rhythmic and dysrhythmic thalamocortical dynamics: GABA systems and the edge effect. Trends Neurosci 28:3253332005

    • Search Google Scholar
    • Export Citation
  • 36

    Llinás RRRibary UJeanmonod DKronberg EMitra PP: Thalamocortical dysrhythmia: a neurological and neuropsychiatric syndrome characterized by magnetoencephalography. Proc Natl Acad Sci U S A 96:15222152271999

    • Search Google Scholar
    • Export Citation
  • 37

    Londero ALangguth BDe Ridder DBonfils PLefaucheur JP: Repetitive transcranial magnetic stimulation (rTMS): a new therapeutic approach in subjective tinnitus?. Neurophysiol Clin 36:1451552006

    • Search Google Scholar
    • Export Citation
  • 38

    Lorenz IMüller NSchlee WHartmann TWeisz N: Loss of alpha power is related to increased gamma synchronization-A marker of reduced inhibition in tinnitus?. Neurosci Lett 453:2252282009

    • Search Google Scholar
    • Export Citation
  • 39

    Marcondes RASanchez TGKii MAOno CRBuchpiguel CALangguth B: Repetitive transcranial magnetic stimulation improve tinnitus in normal hearing patients: a doubleblind controlled, clinical and neuroimaging outcome study. Eur J Neurol 17:38442010

    • Search Google Scholar
    • Export Citation
  • 40

    Meeus OBlaivie COst JDe Ridder DVan de Heyning P: Influence of tonic and burst transcranial magnetic stimulation characteristics on acute inhibition of subjective tinnitus. Otol Neurotol 30:6977032009

    • Search Google Scholar
    • Export Citation
  • 41

    Melcher JRSigalovsky ISGuinan JJ JrLevine RA: Lateralized tinnitus studied with functional magnetic resonance imaging: abnormal inferior colliculus activation. J Neurophysiol 83:105810722000

    • Search Google Scholar
    • Export Citation
  • 42

    Moller AR: Similarities between severe tinnitus and chronic pain. J Am Acad Audiol 11:1151242000

  • 43

    Møller ARMøller MBYokota M: Some forms of tinnitus may involve the extralemniscal auditory pathway. Laryngoscope 102:116511711992

    • Search Google Scholar
    • Export Citation
  • 44

    Møller MBMøller ARJannetta PJJho HD: Vascular decompression surgery for severe tinnitus: selection criteria and results. Laryngoscope 103:4214271993

    • Search Google Scholar
    • Export Citation
  • 45

    Mühlnickel WElbert TTaub EFlor H: Reorganization of auditory cortex in tinnitus. Proc Natl Acad Sci U S A 95:10340103431998

  • 46

    Mukamel RGelbard HArieli AHasson UFried IMalach R: Coupling between neuronal firing, field potentials, and FMRI in human auditory cortex. Science 309:9519542005

    • Search Google Scholar
    • Export Citation
  • 47

    Nir YFisch LMukamel RGelbard-Sagiv HArieli AFried I: Coupling between neuronal firing rate, gamma LFP, and BOLD fMRI is related to interneuronal correlations. Curr Biol 17:127512852007

    • Search Google Scholar
    • Export Citation
  • 48

    Plewnia CReimold MNajib ABrehm BReischl GPlontke SK: Dose-dependent attenuation of auditory phantom perception (tinnitus) by PET-guided repetitive transcranial magnetic stimulation. Hum Brain Mapp 28:2382462007

    • Search Google Scholar
    • Export Citation
  • 49

    Quiñones-Hinojosa AWare MLSanai NMcDermott MW: Assessment of image guided accuracy in a skull model: comparison of frameless stereotaxy techniques vs. frame-based localization. J Neurooncol 76:65702006

    • Search Google Scholar
    • Export Citation
  • 50

    Ramirez RRKopell BHButson CRGaggl WFriedland DRBaillet S: Neuromagnetic source imaging of abnormal spontaneous activity in tinnitus patient modulated by electrical cortical stimulation. Conf Proc IEEE Eng Med Biol Soc 2009. 194019442009

    • Search Google Scholar
    • Export Citation
  • 51

    Ryu HYamamoto SSugiyama KNozue M: Neurovascular compression syndrome of the eighth cranial nerve. What are the most reliable diagnostic signs?. Acta Neurochir (Wien) 140:127912861998

    • Search Google Scholar
    • Export Citation
  • 52

    Seidman MDRidder DDElisevich KBowyer SMDarrat IDria J: Direct electrical stimulation of Heschl's gyrus for tinnitus treatment. Laryngoscope 118:4915002008

    • Search Google Scholar
    • Export Citation
  • 53

    Shi YBurchiel KJAnderson VCMartin WH: Deep brain stimulation effects in patients with tinnitus. Otolaryngol Head Neck Surg 141:2852872009

    • Search Google Scholar
    • Export Citation
  • 54

    Smits MKovacs Sde Ridder DPeeters RRvan Hecke PSunaert S: Lateralization of functional magnetic resonance imaging (fMRI) activation in the auditory pathway of patients with lateralized tinnitus. Neuroradiology 49:6696792007

    • Search Google Scholar
    • Export Citation
  • 55

    Tonndorf J: The analogy between tinnitus and pain: a suggestion for a physiological basis of chronic tinnitus. Hear Res 28:2712751987

    • Search Google Scholar
    • Export Citation
  • 56

    van der Loo EGais SCongedo MVanneste SPlazier MMenovsky T: Tinnitus intensity dependent gamma oscillations of the contralateral auditory cortex. PLoS ONE 4:e73962009

    • Search Google Scholar
    • Export Citation
  • 57

    Vanneste SPlazier MOst Jvan der Loo EVan de Heyning PDe Ridder D: Bilateral dorsolateral prefrontal cortex modulation for tinnitus by transcranial direct current stimulation: a preliminary clinical study. Exp Brain Res 202:7797852010

    • Search Google Scholar
    • Export Citation
  • 58

    Weisz NMüller SSchlee WDohrmann KHartmann TElbert T: The neural code of auditory phantom perception. J Neurosci 27:147914842007

    • Search Google Scholar
    • Export Citation
  • 59

    Yoo SSTalos IFGolby AJBlack PMPanych LP: Evaluating requirements for spatial resolution of fMRI for neurosurgical planning. Hum Brain Mapp 21:34432004

    • Search Google Scholar
    • Export Citation
  • 60

    Zöger SSvedlund JHolgers KM: The Hospital Anxiety and Depression Scale (HAD) as a screening instrument in tinnitus evaluation. Int J Audiol 43:4584642004

    • Search Google Scholar
    • Export Citation

TrendMD

Metrics

Metrics

All Time Past Year Past 30 Days
Abstract Views 180 180 9
Full Text Views 132 103 0
PDF Downloads 40 37 0
EPUB Downloads 0 0 0

PubMed

Google Scholar