Wireless Instantaneous Neurotransmitter Concentration System: electrochemical monitoring of serotonin using fast-scan cyclic voltammetry—a proof-of-principle study

Laboratory investigation

Restricted access

Object

The authors previously reported the development of the Wireless Instantaneous Neurotransmitter Concentration System (WINCS) for measuring dopamine and suggested that this technology may be useful for evaluating deep brain stimulation–related neuromodulatory effects on neurotransmitter systems. The WINCS supports fast-scan cyclic voltammetry (FSCV) at a carbon-fiber microelectrode (CFM) for real-time, spatially resolved neurotransmitter measurements. The FSCV parameters used to establish WINCS dopamine measurements are not suitable for serotonin, a neurotransmitter implicated in depression, because they lead to CFM fouling and a loss of sensitivity. Here, the authors incorporate into WINCS a previously described N-shaped waveform applied at a high scan rate to establish wireless serotonin monitoring.

Methods

Optimized for the detection of serotonin, FSCV consisted of an N-shaped waveform scanned linearly from a resting potential of +0.2 to +1.0 V, then to −0.1 V and back to +0.2 V, at a rate of 1000 V/second. Proof-of-principle tests included flow injection analysis and electrically evoked serotonin release in the dorsal raphe nucleus of rat brain slices.

Results

Flow cell injection analysis demonstrated that the N waveform, applied at a scan rate of 1000 V/second, significantly reduced serotonin fouling of the CFM, relative to that observed with FSCV parameters for dopamine. In brain slices, WINCS reliably detected subsecond serotonin release in the dorsal raphe nucleus evoked by local high-frequency stimulation.

Conclusions

The authors found that WINCS supported high-fidelity wireless serotonin monitoring by FSCV at a CFM. In the future such measurements of serotonin in large animal models and in humans may help to establish the mechanism of deep brain stimulation for psychiatric disease.

Abbreviations used in this paper: CFM = carbon fiber microelectrode; Cg25 = Brodmann Area 25 of the subgenual cingulated cortex; DBS = deep brain stimulation; DR = dorsal raphe; FSCV = fast-scan cyclic voltammetry; SSRI = selective serotonin reuptake inhibitor; WINCS = Wireless Instantaneous Neurotransmitter Concentration System; 5-HT = 5-hydroxytryptamine (serotonin).
Article Information

Contributor Notes

Address correspondence to: Kendall H. Lee, M.D., Ph.D., Department of Neurosurgery, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905. email: lee.kendall@mayo.edu.Please include this information when citing this paper: published online April 23, 2010; DOI: 10.3171/2010.3.JNS091627.

© AANS, except where prohibited by US copyright law.

Headings
References
  • 1

    Aghajanian GKRasmussen K: Intracellular studies in the facial nucleus illustrating a simple new method for obtaining viable motoneurons in adult rat brain slices. Synapse 3:3313381989

    • Search Google Scholar
    • Export Citation
  • 2

    Agnesi FTye SJBledsoe JMGriessenauer CJKimble CJSieck GC: Wireless Instantaneous Neurotransmitter Concentration System-based amperometric detection of dopamine, adenosine, and glutamate for intraoperative neurochemical monitoring. Laboratory investigation. J Neurosurg 111:7017112009

    • Search Google Scholar
    • Export Citation
  • 3

    Aouizerate BCuny EMartin-Guehl CGuehl DAmieva HBenazzouz A: Deep brain stimulation of the ventral caudate nucleus in the treatment of obsessive-compulsive disorder and major depression. Case report. J Neurosurg 101:6826862004

    • Search Google Scholar
    • Export Citation
  • 4

    Bejjani BPDamier PArnulf IThivard LBonnet AMDormont D: Transient acute depression induced by high-frequency deep-brain stimulation. N Engl J Med 340:147614801999

    • Search Google Scholar
    • Export Citation
  • 5

    Bekar LLibionka WTian GFXu QTorres AWang X: Adenosine is crucial for deep brain stimulation-mediated attenuation of tremor. Nat Med 14:75802008

    • Search Google Scholar
    • Export Citation
  • 6

    Benabid ALChabardes SMitrofanis JPollak P: Deep brain stimulation of the subthalamic nucleus for the treatment of Parkinson's disease. Lancet Neurol 8:67812009

    • Search Google Scholar
    • Export Citation
  • 7

    Bledsoe JMKimble CJCovey DPBlaha CDAgnesi FMohseni P: Development of the Wireless Instantaneous Neurotransmitter Concentration System for intraoperative neurochemical monitoring using fast-scan cyclic voltammetry. Technical note. J Neurosurg 111:7127232009

    • Search Google Scholar
    • Export Citation
  • 8

    Borland LMMichael ACAn introduction to electrochemical methods in neuroscience. Michael ACBorland LM: Electrochemical Methods for Neuroscience Boca Raton, FLCRC Press2007. 115

    • Search Google Scholar
    • Export Citation
  • 9

    Bunin MAPrioleau CMailman RBWightman RM: Release and uptake rates of 5-hydroxytryptamine in the dorsal raphe and substantia nigra reticulata of the rat brain. J Neurochem 70:107710871998

    • Search Google Scholar
    • Export Citation
  • 10

    Cahill PSWalker QDFinnegan JMMickelson GETravis ERWightman RM: Microelectrodes for the measurement of catecholamines in biological systems. Anal Chem 68:318031861996

    • Search Google Scholar
    • Export Citation
  • 11

    Caspi ASugden KMoffitt TETaylor ACraig IWHarrington H: Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 301:3863892003

    • Search Google Scholar
    • Export Citation
  • 12

    Castelli LPerozzo PGenesia MLTorre EPesare MCinquepalmi A: Sexual well being in parkinsonian patients after deep brain stimulation of the subthalamic nucleus. J Neurol Neurosurg Psychiatry 75:126012642004

    • Search Google Scholar
    • Export Citation
  • 13

    Cowen PJ: Serotonin and depression: pathophysiological mechanism or marketing myth?. Trends Pharmacol Sci 29:4334362008

  • 14

    Doshi PBhargava P: Hypersexuality following subthalamic nucleus stimulation for Parkinson's disease. Neurol India 56:4744762008

  • 15

    Doshi PKChhaya NBhatt MH: Depression leading to attempted suicide after bilateral subthalamic nucleus stimulation for Parkinson's disease. Mov Disord 17:108410852002

    • Search Google Scholar
    • Export Citation
  • 16

    Garris PAChristensen JRRebec GVWightman RM: Real-time measurement of electrically evoked extracellular dopamine in the striatum of freely moving rats. J Neurochem 68:1521611997

    • Search Google Scholar
    • Export Citation
  • 17

    Garris PAGreco GPSandberg SGHowes GPongmayteegul SHeidenreich BA: In vivo voltammetry with telemetry. Michael ACBorland LM: Electrochemical Methods for Neuroscience Boca Raton, FLCRC Press2007. 233259

    • Search Google Scholar
    • Export Citation
  • 18

    Hammond CAmmari RBioulac BGarcia L: Latest view on the mechanism of action of deep brain stimulation. Mov Disord 23:211121212008

    • Search Google Scholar
    • Export Citation
  • 19

    Hauptman JSDeSalles AAEspinoza RSedrak MIshida W: Potential surgical targets for deep brain stimulation in treatment-resistant depression. Neurosurg Focus 25:1E32008

    • Search Google Scholar
    • Export Citation
  • 20

    Heien MLJohnson MAWightman RM: Resolving neurotransmitters detected by fast-scan cyclic voltammetry. Anal Chem 76:569757042004

  • 21

    Hensler JG: Serotonergic modulation of the limbic system. Neurosci Biobehav Rev 30:2032142006

  • 22

    Hentall IDPinzon ANoga BR: Spatial and temporal patterns of serotonin release in the rat's lumbar spinal cord following electrical stimulation of the nucleus raphe magnus. Neuroscience 142:8939032006

    • Search Google Scholar
    • Export Citation
  • 23

    Houeto JLMesnage VMallet LPillon BGargiulo Mdu Moncel ST: Behavioural disorders, Parkinson's disease and subthalamic stimulation. J Neurol Neurosurg Psychiatry 72:7017072002

    • Search Google Scholar
    • Export Citation
  • 24

    Jackson BPDietz SMWightman RM: Fast-scan cyclic voltammetry of 5-hydroxytryptamine. Anal Chem 67:111511201995

  • 25

    Jackson BPWightman RM: Dynamics of 5-hydroxytryptamine released from dopamine neurons in the caudate putamen of the rat. Brain Res 674:1631661995

    • Search Google Scholar
    • Export Citation
  • 26

    Jiménez FVelasco FSalin-Pascual RHernández JAVelasco MCriales JL: A patient with a resistant major depression disorder treated with deep brain stimulation in the inferior thalamic peduncle. Neurosurgery 57:5855932005

    • Search Google Scholar
    • Export Citation
  • 27

    Johansen-Berg HGutman DABehrens TEMatthews PMRushworth MFKatz E: Anatomical connectivity of the subgenual cingulate region targeted with deep brain stimulation for treatment-resistant depression. Cereb Cortex 18:137413832008

    • Search Google Scholar
    • Export Citation
  • 28

    John CEBudygin EAMateo YJones SR: Neurochemical characterization of the release and uptake of dopamine in ventral tegmental area and serotonin in substantia nigra of the mouse. J Neurochem 96:2672822006

    • Search Google Scholar
    • Export Citation
  • 29

    John CEJones SRFast scan cyclic voltammetry of dopamine and serotonin in mouse brain slices. Michael ACBorland LM: Electrochemical Methods for Neuroscience Boca Raton, FLCRC Press2007. 4962

    • Search Google Scholar
    • Export Citation
  • 30

    Kopell BHGreenberg BD: Anatomy and physiology of the basal ganglia: implications for DBS in psychiatry. Neurosci Biobehav Rev 32:4084222008

    • Search Google Scholar
    • Export Citation
  • 31

    Kosel MSturm VFrick CLenartz DZeidler GBrodesser D: Mood improvement after deep brain stimulation of the internal globus pallidus for tardive dyskinesia in a patient suffering from major depression. J Psychiatr Res 41:8018032007

    • Search Google Scholar
    • Export Citation
  • 32

    Krack PBatir AVan Blercom NChabardes SFraix VArdouin C: Five-year follow-up of bilateral stimulation of the subthalamic nucleus in advanced Parkinson's disease. N Engl J Med 349:192519342003

    • Search Google Scholar
    • Export Citation
  • 33

    Kristensen EWWilson RMWightman RM: Dispersion in flow injection analysis measured with microvoltammetric electrodes. Anal Chem 58:9869881986

    • Search Google Scholar
    • Export Citation
  • 34

    Lee KHBlaha CDGarris PAMohseni PHorne AEBennet KE: Evolution of deep brain stimulation: human electrometer and smart devices supporting the next generation of therapy. Neuromodulation 12:851032009

    • Search Google Scholar
    • Export Citation
  • 35

    Lee KHBlaha CDHarris BTCooper SHitti FLLeiter JC: Dopamine efflux in the rat striatum evoked by electrical stimulation of the subthalamic nucleus: potential mechanism of action in Parkinson's disease. Eur J Neurosci 23:100510142006

    • Search Google Scholar
    • Export Citation
  • 36

    Lee KHChang SYRoberts DWKim U: Neurotransmitter release from high-frequency stimulation of the subthalamic nucleus. J Neurosurg 101:5115172004

    • Search Google Scholar
    • Export Citation
  • 37

    Lowry CAHale MWEvans AKHeerkens JStaub DRGasser PJ: Serotonergic systems, anxiety, and affective disorder: focus on the dorsomedial part of the dorsal raphe nucleus. Ann N Y Acad Sci 1148:86942008

    • Search Google Scholar
    • Export Citation
  • 38

    Lujan JLChaturvedi AMcIntyre CC: Tracking the mechanisms of deep brain stimulation for neuropsychiatric disorders. Front Biosci 13:589259042008

    • Search Google Scholar
    • Export Citation
  • 39

    Mayberg HSLozano AMVoon VMcNeely HESeminowicz DHamani C: Deep brain stimulation for treatment-resistant depression. Neuron 45:6516602005

    • Search Google Scholar
    • Export Citation
  • 40

    McIntyre CCMori SSherman DLThakor NVVitek JL: Electric field and stimulating influence generated by deep brain stimulation of the subthalamic nucleus. Clin Neurophysiol 115:5895952004

    • Search Google Scholar
    • Export Citation
  • 41

    Michelsen KASchmitz CSteinbusch HW: The dorsal raphe nucleus—from silver stainings to a role in depression. Brain Res Rev 55:3293422007

    • Search Google Scholar
    • Export Citation
  • 42

    Miocinovic SParent MButson CRHahn PJRusso GSVitek JL: Computational analysis of subthalamic nucleus and lenticular fasciculus activation during therapeutic deep brain stimulation. J Neurophysiol 96:156915802006

    • Search Google Scholar
    • Export Citation
  • 43

    Murray CJLopez AD: Alternative projections of mortality and disability by cause 1990–2020: Global Burden of Disease Study. Lancet 349:149815041997

    • Search Google Scholar
    • Export Citation
  • 44

    Nichols DENichols CD: Serotonin receptors. Chem Rev 108:161416412008

  • 45

    Pennington JMMillar JL Jones CPOwesson CAMcLaughlin DPStamford JA: Simultaneous real-time amperometric measurement of catecholamines and serotonin at carbon fibre ‘dident’ microelectrodes. J Neurosci Methods 140:5132004

    • Search Google Scholar
    • Export Citation
  • 46

    Robinson DLHermans ASeipel ATWightman RM: Monitoring rapid chemical communication in the brain. Chem Rev 108:255425842008

  • 47

    Romito LMRaja MDaniele AContarino MFBentivoglio ARBarbier A: Transient mania with hypersexuality after surgery for high frequency stimulation of the subthalamic nucleus in Parkinson's disease. Mov Disord 17:137113742002

    • Search Google Scholar
    • Export Citation
  • 48

    Sartorius AHenn FA: Deep brain stimulation of the lateral habenula in treatment resistant major depression. Med Hypotheses 69:130513082007

    • Search Google Scholar
    • Export Citation
  • 49

    Schlaepfer TECohen MXFrick CKosel MBrodesser DAxmacher N: Deep brain stimulation to reward circuitry alleviates anhedonia in refractory major depression. Neuropsychopharmacology 33:3683772008

    • Search Google Scholar
    • Export Citation
  • 50

    Shon YMChang SYTye SJKimble CJBennet KEBlaha CD: Comonitoring of adenosine and dopamine using the Wireless Instantaneous Neurotransmitter Concentration System: proof of principle. Laboratory investigation. J Neurosurg 112:5395482010

    • Search Google Scholar
    • Export Citation
  • 51

    Smith KAFairburn CGCowen PJ: Relapse of depression after rapid depletion of tryptophan. Lancet 349:9159191997

  • 52

    Swamy BEVenton BJ: Carbon nanotube-modified microelectrodes for simultaneous detection of dopamine and serotonin in vivo. Analyst 132:8768842007

    • Search Google Scholar
    • Export Citation
  • 53

    Talbot PSCooper SJ: Anterior cingulate and subgenual prefrontal blood flow changes following tryptophan depletion in healthy males. Neuropsychopharmacology 31:175717672006

    • Search Google Scholar
    • Export Citation
  • 54

    Temel YBoothman LJBlokland AMagill PJSteinbusch HWVisser-Vandewalle V: Inhibition of 5-HT neuron activity and induction of depressive-like behavior by high-frequency stimulation of the subthalamic nucleus. Proc Natl Acad Sci U S A 104:17087170922007

    • Search Google Scholar
    • Export Citation
  • 55

    Temel YKessels ATan STopdag ABoon PVisser-Vandewalle V: Behavioural changes after bilateral subthalamic stimulation in advanced Parkinson disease: a systematic review. Parkinsonism Relat Disord 12:2652722006

    • Search Google Scholar
    • Export Citation
  • 56

    Threlfell SExley RCragg SJGreenfield SA: Constitutive histamine H2 receptor activity regulates serotonin release in the substantia nigra. J Neurochem 107:7457552008

    • Search Google Scholar
    • Export Citation
  • 57

    van Kuyck KGabriels LCosyns PArckens LSturm VRasmussen S: Behavioural and physiological effects of electrical stimulation in the nucleus accumbens: a review. Acta Neurochir Suppl 97:(Pt 2)3753912007

    • Search Google Scholar
    • Export Citation
  • 58

    Varnäs KHalldin CHall H: Autoradiographic distribution of serotonin transporters and receptor subtypes in human brain. Hum Brain Mapp 22:2462602004

    • Search Google Scholar
    • Export Citation
  • 59

    Velasco MVelasco FJiménez FCarrillo-Ruiz JDVelasco ALSalín-Pascual R: Electrocortical and behavioral responses elicited by acute electrical stimulation of inferior thalamic peduncle and nucleus reticularis thalami in a patient with major depression disorder. Clin Neurophysiol 117:3203272006

    • Search Google Scholar
    • Export Citation
  • 60

    Willis-Owen SATurri MGMunafò MRSurtees PGWainwright NWBrixey RD: The serotonin transporter length polymorphism, neuroticism, and depression: a comprehensive assessment of association. Biol Psychiatry 58:4514562005

    • Search Google Scholar
    • Export Citation
  • 61

    Young SNSmith SEPihl ROErvin FR: Tryptophan depletion causes a rapid lowering of mood in normal males. Psychopharmacology (Berl) 87:1731771985

    • Search Google Scholar
    • Export Citation
TrendMD
Metrics

Metrics

All Time Past Year Past 30 Days
Abstract Views 310 309 80
Full Text Views 197 125 9
PDF Downloads 125 78 3
EPUB Downloads 0 0 0
PubMed
Google Scholar