Evaluation of ventriculomegaly using diffusion tensor imaging: correlations with chronic hydrocephalus and atrophy

Clinical article

Satoru Osuka M.D. 1 , Akira Matsushita M.D. 1 , Tetsuya Yamamoto M.D., Ph.D. 1 , Kousaku Saotome 4 , Tomonori Isobe Ph.D. 3 , Yasushi Nagatomo M.D., Ph.D. 6 , Tomohiko Masumoto M.D., Ph.D. 2 , Yoji Komatsu M.D., Ph.D. 5 , Eiichi Ishikawa M.D., Ph.D. 1 , and Akira Matsumura M.D., Ph.D. 1
View More View Less
  • 1 Department of Neurosurgery,
  • 2 Department of Radiology, Institute of Clinical Medicine, and
  • 3 Graduate School of Comprehensive Human Sciences, University of Tsukuba;
  • 4 Departments of Radiological Technology and
  • 5 Neurosurgery, Tsukuba Medical Center Hospital, Tsukuba; and
  • 6 Department of Neurosurgery, Katsuta Hospital Mito GammaHouse, Hitachi-Naka, Japan
Restricted access

Purchase Now

USD  $45.00

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $505.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $600.00
Print or Print + Online

Object

Ventriculomegaly is a common imaging finding in many types of conditions. It is difficult to determine whether it is related to true hydrocephalus or to an atrophic process by using only imaging procedures such as MR imaging after traumatic injury, stroke, or infectious disease. Diffusion tensor (DT) imaging can distinguish the compression characteristics of white matter, indicating that increased diffusion anisotropy may be related to white matter compression. In this preliminary study, the authors compared the DT imaging findings of ventriculomegaly with those of chronic hydrocephalus or atrophy to clarify the potential of diffusion anisotropy in the identification of hydrocephalus.

Methods

Ten patients with chronic hydrocephalus, 8 patients with atrophy (defined by conventional devices and surgical outcome), and 14 healthy volunteers underwent DT imaging. Images were acquired before and after shunting or once in cases without shunting. The fractional anisotropy (FA) values at many points around the lateral ventricle were evaluated.

Results

The FA patterns around the lateral ventricle in the chronic hydrocephalus and atrophy groups were different. Especially in the caudate nucleus, FA was increased in the chronic hydrocephalus group compared with the atrophy group. Furthermore, the FA values returned to normal levels after shunt placement.

Conclusions

Assessment of the FA value of the caudate nucleus may be an important, less invasive method for distinguishing true hydrocephalus from ventriculomegaly. Further research in a large number of patients is needed to verify the diagnostic ability of this method.

Abbreviations used in this paper: ant-IC = anterior limb of internal capsule; DT = diffusion tensor; FA = fractional anisotropy; FSE = fast spin echo; ICH = intracranial hemorrhage; ICP = intracranial pressure; iNPH = idiopathic normal-pressure hydrocephalus; MD = mean diffusivity; post-IC = posterior limb of the internal capsule; PVH = periventricular hyperintensity; SAH = subarachnoid hemorrhage; VOI = volume of interest.

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $505.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $600.00

Contributor Notes

Address correspondence to: Eiichi Ishikawa, M.D., Ph.D., Department of Neurosurgery, Institute of Clinical Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8575, Japan. email: e-ishikawa@md.tsukuba.ac.jp.

Please include this information when citing this paper: published online August 21, 2009; DOI: 10.3171/2009.7.JNS09550.

  • 1

    Assaf Y, , Ben-Sira L, , Constantini S, , Chang LC, & Beni-Adani L: Diffusion tensor imaging in hydrocephalus: initial experience. AJNR Am J Neuroradiol 27:17171724, 2006

    • Search Google Scholar
    • Export Citation
  • 2

    Basser PJ, , Mattiello J, & LeBihan D: Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson B 103:247254, 1994

    • Search Google Scholar
    • Export Citation
  • 3

    Basser PJ, & Pierpaoli C: Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B 111:209219, 1996

    • Search Google Scholar
    • Export Citation
  • 4

    Del Bigio MR: Neuropathological changes caused by hydrocephalus. Acta Neuropathol 85:573585, 1993

  • 5

    Del Bigio MR: Pathophysiologic consequences of hydrocephalus. Neurosurg Clin N Am 12:639649, 2001

  • 6

    Del Bigio MR, & Bruni JE: Periventricular pathology in hydrocephalic rabbits before and after shunting. Acta Neuropathol 77:186195, 1988

    • Search Google Scholar
    • Export Citation
  • 7

    DeVito EE, , Salmond CH, , Owler BK, , Sahakian BJ, & Pickard JD: Caudate structural abnormalities in idiopathic normal pressure hydrocephalus. Acta Neurol Scand 116:328332, 2007

    • Search Google Scholar
    • Export Citation
  • 8

    Dixon GR, , Friedman JA, , Luetmer PH, , Quast LM, , McClelland RL, & Petersen RC, : Use of cerebrospinal fluid flow rates measured by phase-contrast MR to predict outcome of ventriculoperitoneal shunting for idiopathic normal-pressure hydrocephalus. Mayo Clin Proc 77:509514, 2002

    • Search Google Scholar
    • Export Citation
  • 9

    Fletcher JM, , Bohan TP, , Brandt ME, , Brookshire BL, , Beaver SR, & Francis DJ, : Cerebral white matter and cognition in hydrocephalic children. Arch Neurol 49:818824, 1992

    • Search Google Scholar
    • Export Citation
  • 10

    Gyldensted C: Measurements of the normal ventricular system and hemispheric sulci of 100 adults with computed tomography. Neuroradiology 14:183192, 1977

    • Search Google Scholar
    • Export Citation
  • 11

    Hasan KM, , Kamali A, & Kramer LA: Mapping the human brain white matter tracts relative to cortical and deep gray matter using diffusion tensor imaging at high spatial resolution. Magn Reson Imaging 27:631636, 2009

    • Search Google Scholar
    • Export Citation
  • 12

    Ishikawa M, , Hashimoto M, , Kuwana N, , Mori E, , Miyake H, & Wachi A, : Guidelines for management of idiopathic normal pressure hydrocephalus. Neurol Med Chir (Tokyo) 48:Suppl S1S23, 2008

    • Search Google Scholar
    • Export Citation
  • 13

    Kitagaki H, , Mori E, , Ishii K, , Yamaji S, , Hirono N, & Imamura T: CSF spaces in idiopathic normal pressure hydrocephalus: morphology and volumetry. AJNR Am J Neuroradiol 19:12771284, 1998

    • Search Google Scholar
    • Export Citation
  • 14

    Marmarou A, , Foda MA, , Bandoh K, , Yoshihara M, , Yamamoto T, & Tsuji O, : Posttraumatic ventriculomegaly: hydrocephalus or atrophy? A new approach for diagnosis using CSF dynamics. J Neurosurg 85:10261035, 1996

    • Search Google Scholar
    • Export Citation
  • 15

    Mataro M, , Matarin M, , Poca MA, , Pueyo R, , Sahuquillo J, & Barrios M, : Functional and magnetic resonance imaging correlates of corpus callosum in normal pressure hydrocephalus before and after shunting. J Neurol Neurosurg Psychiatry 78:395398, 2007

    • Search Google Scholar
    • Export Citation
  • 16

    Mori S, & Zhang J: Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron 51:527539, 2006

  • 17

    Page RB, , Rosenstein JM, , Dovey BJ, & Leure-duPree AE: Ependymal changes in experimental hydrocephalus. Anat Rec 194:83103, 1979

  • 18

    Pajevic S, & Pierpaoli C: Color schemes to represent the orientation of anisotropic tissues from diffusion tensor data: application to white matter fiber tract mapping in the human brain. Magn Reson Med 42:526540, 1999

    • Search Google Scholar
    • Export Citation
  • 19

    Pickard JD, , Coleman MR, & Czosnyka M: Hydrocephalus, ventriculomegaly and the vegetative state: a review. Neuropsychol Rehabil 15:224236, 2005

    • Search Google Scholar
    • Export Citation
  • 20

    Poca MA, , Sahuquillo J, , Busto M, , Rovira A, , Capellades J, & Mataro M, : Agreement between CSF flow dynamics in MRI and ICP monitoring in the diagnosis of normal pressure hydrocephalus. Sensitivity and specificity of CSF dynamics to predict outcome. Acta Neurochir Suppl 81:710, 2002

    • Search Google Scholar
    • Export Citation
  • 21

    Schonberg T, , Pianka P, , Hendler T, , Pasternak O, & Assaf Y: Characterization of displaced white matter by brain tumors using combined DTI and fMRI. Neuroimage 30:11001111, 2006

    • Search Google Scholar
    • Export Citation
  • 22

    Segev Y, , Metser U, , Beni-Adani L, , Elran C, , Reider G II, & Constantini S: Morphometric study of the midsagittal MR imaging plane in cases of hydrocephalus and atrophy and in normal brains. AJNR Am J Neuroradiol 22:16741679, 2001

    • Search Google Scholar
    • Export Citation
  • 23

    Sotak CH: The role of diffusion tensor imaging in the evaluation of ischemic brain injury—a review. NMR Biomed 15:561569, 2002

  • 24

    Sundgren PC, , Dong Q, , Gomez-Hassan D, , Mukherji SK, , Maly P, & Welsh R: Diffusion tensor imaging of the brain: review of clinical applications. Neuroradiology 46:339350, 2004

    • Search Google Scholar
    • Export Citation
  • 25

    Torvik A, & Stenwig AE: The pathology of experimental obstructive hydrocephalus. Electron microscopic observations. Acta Neuropathol 38:2126, 1977

    • Search Google Scholar
    • Export Citation
  • 26

    Wieshmann UC, , Symms MR, , Parker GJ, , Clark CA, , Lemieux L, & Barker GJ, : Diffusion tensor imaging demonstrates deviation of fibres in normal appearing white matter adjacent to a brain tumour. J Neurol Neurosurg Psychiatry 68:501503, 2000

    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 432 149 8
Full Text Views 140 14 2
PDF Downloads 104 10 1
EPUB Downloads 0 0 0