Clinical and radiobiological advantages of single-dose stereotactic light-ion radiation therapy for large intracranial arteriovenous malformations

Technical note

Bahram Andisheh Department of Medical Radiation Physics, Karolinska Institute and Stockholm University, Stockholm, Sweden; and

Search for other papers by Bahram Andisheh in
Current site
Google Scholar
PubMed
Close
 M.Sc.
,
Anders Brahme Department of Medical Radiation Physics, Karolinska Institute and Stockholm University, Stockholm, Sweden; and

Search for other papers by Anders Brahme in
Current site
Google Scholar
PubMed
Close
 Ph.D.
,
Mohammad A. Bitaraf Department of Neurosurgery, Tehran University of Medical Sciences, Tehran, Iran

Search for other papers by Mohammad A. Bitaraf in
Current site
Google Scholar
PubMed
Close
 M.D.
,
Panayiotis Mavroidis Department of Medical Radiation Physics, Karolinska Institute and Stockholm University, Stockholm, Sweden; and

Search for other papers by Panayiotis Mavroidis in
Current site
Google Scholar
PubMed
Close
 Ph.D.
, and
Bengt K. Lind. Department of Medical Radiation Physics, Karolinska Institute and Stockholm University, Stockholm, Sweden; and

Search for other papers by Bengt K. Lind. in
Current site
Google Scholar
PubMed
Close
 Ph.D.
Restricted access

Purchase Now

USD  $45.00

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $536.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $636.00
USD  $45.00
USD  $536.00
USD  $636.00
Print or Print + Online Sign in

Object

Radiation treatment of large arteriovenous malformations (AVMs) remains difficult and not very effective, even though seemingly promising methods such as staged volume treatments have been proposed by some radiation treatment centers. In symptomatic patients harboring large intracranial AVMs not amenable to embolization or resection, single-session high-dose stereotactic radiation therapy is a viable option, and the special characteristics of high-ionization-density light-ion beams offer several treatment advantages over photon and proton beams. These advantages include a more favorable depth-dose distribution in tissue, an almost negligible lateral scatter of the beam, a sharper penumbra, a steep dose falloff beyond the Bragg peak, and a higher probability of vascular response due to high ionization density and associated induction of endothelial cell proliferation and/or apoptosis. Carbon ions were recently shown to be an effective treatment for skull-base tumors. Bearing that in mind, the authors postulate that the unique physical and biological characteristics of light-ion beams should convey considerable clinical advantages in the treatment of large AVMs. In the present meta-analysis the authors present a comparison between light-ion beam therapy and more conventional modalities of radiation treatment with respect to these lesions.

Methods

Dose-volume histograms and data on peripheral radiation doses for treatment of large AVMs were collected from various radiation treatment centers. Dose-response parameters were then derived by applying a maximum likelihood fitting of a binomial model to these data. The present binomial model was needed because the effective number of crucial blood vessels in AVMs (the number of vessels that must be obliterated to effect a cure, such as large fistulous nidus vessels) is low, making the Poisson model less suitable. In this study the authors also focused on radiobiological differences between various radiation treatments.

Results

Light-ion Bragg-peak dose delivery has the precision required for treating very large AVMs as well as for delivering extremely sharp, focused beams to irregular lesions. Stereotactic light-ion radiosurgery resulted in better angiographically defined obliteration rates, less white-matter necrosis, lower complication rates, and more favorable clinical outcomes. In addition, in patients treated by He ion beams, a sharper dose-response gradient was observed, probably due to a more homogeneous radiosensitivity of the AVM nidus to light-ion beam radiation than that seen when low-ionization-density radiation modalities, such as photons and protons, are used.

Conclusions

Bragg-peak radiosurgery can be recommended for most large and irregular AVMs and for the treatment of lesions located in front of or adjacent to sensitive and functionally important brain structures. The unique physical and biological characteristics of light-ion beams are of considerable advantage for the treatment of AVMs: the densely ionizing beams of light ions create a better dose and biological effect distribution than conventional radiation modalities such as photons and protons. Using light ions, greater flexibility can be achieved while avoiding healthy critical structures such as diencephalic and brainstem nuclei and tracts. Treatment with the light ion He or Li is more suitable for AVMs ≤ 10 cm3, whereas treatment with the light ion Li, Be, or C may be more appropriate for larger AVMs. A binomial model based on the effective number of crucial vessels in the AVM may be used quite well to predict AVM obliteration probabilities for both small and large AVMs when therapies involving either photons or light ions are used.

Abbreviations used in this paper:

AVM = arteriovenous malformation; D50 = radiation dose at which the response probability is 50%; FSU = functional subunit; γ = maximum normalized value of the dose-response gradient; GKS = Gamma Knife surgery; LET = linear energy transfer; LINAC = linear accelerator; RBE = relative biological effectiveness.
  • Collapse
  • Expand
  • 1

    Ågren Cronqvist K: Quantification of the Response of Heterogeneous Tumors and Organized Normal Tissues to Fractionated Radiotherapy [dissertation] Stockholm, Stockholm University, 1995

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2

    Brahme A: Dosimetric precision requirements in radiation therapy. Acta Radiol Oncol 23:379391, 1984

  • 3

    Brahme A: Recent advances in light ion radiation therapy. Int J Radiat Oncol Biol Phys 58:603616, 2004

  • 4

    Brahme A, , Lewenson R, , Ringborg U, , Amaldi U, , Gerardi F, & Rossi S: Design of a center for biologically optimized light ion therapy in Stockholm. Nucl Instru Methods Phys Res B 184:569588, 2001

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5

    Chang SD, , Shuster DL, , Steinberg GK, , Levy RP, & Frankel K: Stereotactic radiosurgery of arteriovenous malformations: pathologic changes in resected tissue. Clin Neuropathol 16:111116, 1997

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6

    Colombo F, , Pozza F, , Chierego G, , Casentini L, , De Luca G, & Francescon P: Linear accelerator radiosurgery of cerebral arteriovenous malformations: an update. Neurosurgery 34:1421, 1994

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7

    Ellis TA, , Friedman WA, , Bova FJ, , Kubilis PS, & Buatti JM: Analysis of treatment failure after radiosurgery for arteriovenous malformations. J Neurosurg 89:104110, 1998

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8

    Fabrikant JI, , Levy RP, , Steinberg GK, , Phillips MH, , Frankel KA, & Lyman JT, et al.: Charged-particle radiosurgery for intracranial vascular malformations. Neurosurg Clin N Am 3:99139, 1992

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9

    Fabrikant JI, , Levy RP, , Steinberg GK, , Phillips MH, , Frankel KA, & Silverberg GD: Stereotactic charged-particle radiosurgery: clinical results of treatment of 1200 patients with intracranial arteriovenous malformations and pituitary disorders. Clin Neurosurg 38:472492, 1992

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10

    Fabrikant JI, , Levy RP, , Steinberg GK, , Silverberg GD, , Frankel KA, & Phillips MH, et al.: Heavy-charged-particle radiosurgery for intracranial arteriovenous malformations. Stereotact Funct Neurosurg 57:5063, 1991

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11

    Fabrikant JI, , Lyman JT, & Frankel KA: Heavy charged-particle Bragg peak radiosurgery for intracranial vascular disorders. Radiat Res Suppl 8:S244S258, 1985

  • 12

    Fleetwood IG, & Steinberg GK: Arteriovenous malformations. Lancet 359:863873, 2002

  • 13

    Flickinger JC, , Pollock BE, , Kondziolka D, & Lunsford LD: A dose response analysis of arteriovenous malformation obliteration after radiosurgery. Int J Radiat Oncol Biol Phys 36:873879, 1996

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14

    Friedman WA, , Bova FJ, , Bollampally S, & Bradshaw P: Analysis of factors predictive of success or complications in arteriovenous malformation radiosurgery. Neurosurgery 52:296308, 2003

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15

    Germano IM: LINAC and Gamma Knife Radiosurgery Stuttgart, Thieme, 2000

  • 16

    Graf CJ, , Perret GE, & Torner JC: Bleeding from cerebral arteriovenous malformations as part of their natural history. J Neurosurg 58:331337, 1983

  • 17

    Hofmeister C, , Stapf C, , Hartmann A, , Sciacca RR, , Mansmann U, & terBrugge K: Demographic, morphological, and clinical characteristics of 1289 patients with brain arteriovenous malformation. Stroke 31:13071310, 2000

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18

    Kanai T, , Endo M, , Minohara S, , Miyahara N, , Koyama-ito H, & Tomura H, et al.: Biophysical characteristics of HIMAC clinical radiation system for heavy-ion radiation therapy. Int J Radiat Oncol Biol Phys 44:201210, 1999

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19

    Kempe J, , Gudowska I, & Brahme A: Depth absorbed dose and LET distributions of therapeutic 1H, 4He, 7Li and 12C beams. Med Phys 34:183192, 2007

  • 20

    Karlsson B: Gamma Knife Surgery of Cerebral Arteriovenous Malformations [dissertation] Stockholm, Karolinska Hospital, 1996

  • 21

    Kjellberg RN, , Hanamura T, , Davis KR, , Lyons SL, & Adams RD: Bragg peak proton-beam therapy for arteriovenous malformations of the brain. N Engl J Med 309:269274, 1983

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22

    Kraft G: Tumor therapy with heavy charged particles. Prog Part Phys 45:2 Suppl S473S544, 2000

  • 23

    Kwon Y, , Jeon SR, , Kim JH, , Lee JK, , Ra DS, & Lee DJ, et al.: Analysis of the causes of treatment failure in gamma knife radiosurgery for intracranial arteriovenous malformations. J Neurosurg 93:3 Suppl 104106, 2000

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24

    Levy RP, , Fabrikant JL, , Frankel KA, , Phillips MH, & Lyman JT: Charged-particle radiosurgery of the brain. Neurosurg Clin N Am 1:955990, 1990

  • 25

    Levy RP, , Fabrikant JI, , Frankel KA, , Phillips MH, & Lyman JT: Stereotactic heavy-charged-particle Bragg peak radiosurgery for the treatment of intracranial arteriovenous malformations in childhood and adolescence. Neurosurgery 24:841852, 1989

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26

    Levy RP, , Schulte RW, , Slater JD, , Miller DW, & Slater JM: Stereotactic radiosurgery, the role of charged particles. Acta Oncol 38:165169, 1999

  • 27

    Luxton G, , Petrovich Z, , Jozsef G, , Nedzi LA, & Apuzzo ML: Stereotactic radiosurgery: principles and comparison of treatment methods. Neurosurgery 32:241259, 1993

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28

    Lyman JT, , Phillips MH, , Frankel KA, & Fabrikant JI: Stereotactic frame for neuroradiology and charged particle Bragg peak radiosurgery of intracranial disorders. Int J Radiat Oncol Biol Phys 16:16151621, 1989

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29

    Lyman JT, , Phillips MH, , Frankel KA, , Levy RP, & Fabrikant JI: Radiation physics for particle beam radiosurgery. Neurosurg Clin N Am 3:18, 1992

  • 30

    Marks MP, , Delapaz RL, , Fabrikant JI, , Frankel KA, , Phillips MH, & Levy RP, et al.: Intracranial vascular malformations: imaging of charged-particle radiosurgery. Part II. Complications. Radiology 168:457462, 1988

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31

    Mavroidis P, , Theodorou K, , Lefkopoulos D, , Nataf F, , Schlienger M, & Karlsson B, et al.: Prediction of AVM obliteration after stereotactic radiotherapy using radiobiological modeling. Phys Med Biol 47:24712494, 2002

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32

    Miyawaki L, , Dowd C, , Wara W, , Goldsmith B, , Albright N, & Gutin P, et al.: Five year results of LINAC radiosurgery for arteriovenous malformations: outcome for large AVMS. Int J Radiat Oncol Biol Phys 44:10891106, 1999

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33

    Ogilvy CS: Radiation therapy for arteriovenous malformations: a review. Neurosurgery 26:725735, 1990

  • 34

    Ogilvy CS, , Stieg PE, , Awad I, , Brown RD Jr, , Kondziolka D, & Rosenwasser R, et al.: Recommendations for the management of intracranial arteriovenous malformations: a statement for healthcare professionals from a special writing group of the Stroke Council, American Stroke Association. Circulation 103:26442657, 2001

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35

    Pellettieri L, & Blomquist E: Differences in radiosensitivity between brain, small and large arteriovenous malformations. A tentative explanation of the incongruent results of radiotherapy. Med Hypothes 52:551556, 1999

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36

    Phillips MH, , Frankel KA, , Lyman JT, , Fabrikant JI, & Levy RP: Comparison of different radiation types and irradiation geometries in stereotactic radiosurgery. Int J Radiat Oncol Biol Phys 18:211220, 1990

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37

    Phillips MH, , Frankel KA, , Lyman JT, , Fabrikant JI, & Levy RP: Heavy charged-particle stereotactic radiosurgery: cerebral angiography and CT in the treatment of intracranial vascular malformations. Int J Radiat Oncol Biol Phys 17:419426, 1989

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38

    Pica A, , Ayzac L, , Sentenac I, , Rocher FP, , Pelissou-Guyotat I, & Emery JC, et al.: Stereotactic radiosurgery for arteriovenous malformations of the brain using a standard linear accelerator: the Lyon experience. Radiother Oncol 40:5154, 1996

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39

    Sadasivan B, & Hwang PY: Large cerebral arteriovenous malformations: experience with 27 cases. Surg Neurol 45:245249, 1996

  • 40

    Schneider BF, , Eberhard DA, & Steiner LE: Histopathology of arteriovenous malformations after gamma knife radiosurgery. J Neurosurg 87:352357, 1997

  • 41

    Schulz-Ertner D, , Nikoghosyan A, , Thilmann C, , Haberer T, , Jäkel O, & Karger C, et al.: Results of carbon ion radiotherapy in 152 patients. Int J Radiat Oncol Biol Phys 58:631640, 2004

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42

    Seifert V, , Stolke D, , Mehdorn HM, & Hoffmann B: Clinical and radiological evaluation of long-term results of stereotactic proton beam radiosurgery in patients with cerebral arteriovenous malformations. J Neurosurg 81:683689, 1994

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43

    Shin M, , Kawamoto S, , Kurita H, , Tago M, , Sasaki T, & Morita A, et al.: Retrospective analysis of a 10-year experience of stereotactic radio surgery for arteriovenous malformations in children and adolescents. J Neurosurg 97:753754, 2002

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44

    Shin M, , Maruyama K, , Kurita H, , Kawamoto S, , Tago M, & Terahara A, et al.: Analysis of nidus obliteration rates after gamma knife surgery for arteriovenous malformations based on longterm follow-up data: the University of Tokyo experience. J Neurosurg 101:1824, 2004

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45

    Silander H, , Pellettieri L, , Enblad P, , Montelius A, , Grusell E, & Vallhagen-Dahlgren C, et al.: Fractionated, stereotactic proton beam treatment of cerebral arteriovenous malformations. Acta Neurol Scand 109:8590, 2004

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46

    Sirin S, , Kondziolka D, , Niranjan A, , Flickinger JC, , Maitz A, & Lunsford LD: Prospective staged volume radiosurgery for large arteriovenous malformations: indications and outcomes in otherwise untreatable patients. Neurosurgery 58:1727, 2006

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47

    Souhami L, , Olivier A, , Podgorsak EB, , Hazel J, , Pla M, & Tampieri D: Dynamic stereotactic radiosurgery in arteriovenous malformation. Preliminary treatment results. Cancer 66:1520, 1990

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48

    Steinberg GK, , Fabrikant JI, , Marks MP, , Levy RP, , Frankel KA, & Phillips MH, et al.: Stereotactic heavy-charged-particle Bragg-peak radiation for intracranial arteriovenous malformations. N Engl J Med 323:96101, 1990

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49

    Steinberg GK, , Fabrikant JI, , Marks MP, , Levy RP, , Frankel KA, & Phillips MH, et al.: Stereotactic helium ion Bragg peak radiosurgery for intracranial arteriovenous malformations. Detailed clinical and neuroradiologic outcome. Stereotact Funct Neurosurg 57:3649, 1991

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50

    Steinberg GK, , Levy RP, , Fabrikant JI, , Frankel KA, , Phillips MH, & Marks MP: Stereotactic helium ion Bragg peak radiosurgery for angiographically occult intracranial vascular malformations. Stereotact Funct Neurosurg 57:6471, 1991

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51

    Tilikidis A: Microdosimetric Description of Beam Quality and Biological Effectiveness in Radiation Therapy [dissertation] Stockholm, Stockholm University, 1994

  • 52

    Veznedaroglu E, , Andrews DW, , Benitez RP, , Downes MB, , Werner-Wasik M, & Rosenstock J, et al.: Fractionated stereotactic radiotherapy for the treatment of large arteriovenous malformations with or without previous partial embolization. Neurosurgery 55:519530, 2004

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53

    Yaşargil Y: Microneurosurgery, AVM of the Brain History, Embryology, Pathological Considerations, Hemodynamics, Diagnostic studies, Microsurgical Anatomy Stuttgart, Georg Thieme, 1987. Vol 3:138160

    • PubMed
    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 888 222 10
Full Text Views 156 26 2
PDF Downloads 120 22 3
EPUB Downloads 0 0 0