Window anatomy for neurosurgical approaches

Laboratory investigation

View More View Less
  • 1 Departments of Anatomy and
  • 2 Neurosurgery, Ankara University, Sihhiye, Ankara, Turkey
Restricted access

Purchase Now

USD  $45.00

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $505.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $600.00
Print or Print + Online

Object

Knowledge of the cranium projections of the gyral structures is essential to reduce the surgical complications and to perform minimally invasive interventions in daily neurosurgical practice. Thus, in this study the authors aimed to provide detailed information on cranial projections of the eloquent cortical areas.

Methods

Ten formalin-fixed adult human skulls were obtained. Using sutures and craniometrical points, the crania were divided into 8 windows: superior frontal, inferior frontal, superior parietal, inferior parietal, sphenoidal, temporal, superior occipital, and inferior occipital. The projections of the precentral gyrus, postcentral gyrus, inferior frontal gyrus, superior temporal gyrus, transverse temporal gyri, Heschl gyrus, genu and splenium of the corpus callosum, supramarginal gyrus, angular gyrus, calcarine sulcus, and sylvian fissure to cranial vault were evaluated.

Results

Three-fourths of the precentral gyrus and postcentral gyrus were in the superior parietal window. The inferior frontal gyrus extended to the inferior parietal window in 80%. The 3 important parts of this gyrus were located below the superior temporal line in all hemispheres. The orbital and triangular parts were in the inferior frontal window, and the opercular part was in the inferior parietal window. The superior temporal gyrus was usually located in the inferior parietal and temporal windows, whereas the supramarginal gyrus and angular gyrus were usually located in the superior and inferior parietal windows. The farthest anterior point of the Heschl gyrus was usually located in the inferior parietal window. The mean positions of arachnoid granulations were measured as 3.9 ± 0.39 cm anterior and 7.3 ± 0.51 cm posterior to the bregma.

Conclusions

Given that recognition of the gyral patterns underlying the craniotomies is not always easy, awareness of the coordinates and projections of certain gyri according to the craniometric points may considerably contribute to surgical interventions.

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $505.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $600.00

Contributor Notes

Address correspondence to: Hasan Caglar Ugur, M.D., Ph.D., Department of Neurosurgery, Ankara University Faculty of Medicine, Ibn-i Sina Hospital, 06100 Sihhiye, Ankara, Turkey. email: hasanugur2001@hotmail.com.
  • 1

    Ersoy M, , Evliyaoglu C, , Bozkurt MC, , Konuskan B, , Tekdemir I, & Keskil IS: Epipteric bones in the pterion may be a surgical pitfall. Minim Invasive Neurosurg 46:363365, 2003

    • Search Google Scholar
    • Export Citation
  • 2

    Figueiredo EG, , Deshmukh V, , Nakaji P, , Deshmukh P, , Crusius MU, & Crawford N, : An anatomical evaluation of the mini-supraorbital approach and comparison with standard craniotomies. Neurosurgery 59:212220, 2006

    • Search Google Scholar
    • Export Citation
  • 3

    Germann J, , Robbins S, , Halsband U, & Petrides M: Precentral sulcal complex of the human brain: morphology and statistical probability maps. J Comp Neurol 493:334356, 2005

    • Search Google Scholar
    • Export Citation
  • 4

    Gong X, , Fang M, , Wang J, , Sun J, , Zhang X, & Kwong WH, : Three-dimensional reconstruction of brain surface anatomy based on magnetic resonance imaging diffusion-weighted imaging: a new approach. J Biomed Sci 11:711716, 2004

    • Search Google Scholar
    • Export Citation
  • 5

    Hattingen E, , Good C, , Weidauer S, , Herminghaus S, , Raab P, & Marquardt G, : Brain surface reformatted images for fast and easy localization of perirolandic lesions. J Neurosurg 102:302310, 2005

    • Search Google Scholar
    • Export Citation
  • 6

    Jannin P, , Morandi X, , Fleig OJ, , Rumeur EL, , Toulouse P, & Gibaud B, : Integration of sulcal and functional information for multimodal neuronavigation. J Neurosurg 96:713723, 2002

    • Search Google Scholar
    • Export Citation
  • 7

    Kawashima M, , Li X, , Rhoton AL, , Ulm AJ, , Oka H, & Fujii K: Surgical approaches to the atrium of the lateral ventricle: microsurgical anatomy. Surg Neurol 65:436445, 2006

    • Search Google Scholar
    • Export Citation
  • 8

    Kawashima M, , Matsushima T, & Sasaki T: Surgical strategy for distal anterior cerebral artery aneurysm: microsurgical anatomy. J Neurosurg 99:517525, 2003

    • Search Google Scholar
    • Export Citation
  • 9

    Krishnan R, , Raabe A, , Hattingen E, , Szelenyi A, , Yahya H, & Hermann E, : Functional magnetic resonance imaging-integrated neuronavigation:correlation between lesion-to-motor cortex distance and outcome. Neurosurgery 55:904915, 2004

    • Search Google Scholar
    • Export Citation
  • 10

    Levitt JG, , Blanton RE, , Smalley S, , Thompson PM, , Guthrie D, & McCracken JT, : Cortical sulcal maps in autism. Cereb Cortex 13:728735, 2003

    • Search Google Scholar
    • Export Citation
  • 11

    Martins C, , Li X, & Rhoton AL: Role of the zygomaticofacial foramen in the orbitozygomatic craniotomy: anatomic report. Neurosurgery 53:168173, 2003

    • Search Google Scholar
    • Export Citation
  • 12

    Maudgil DD, , Free SL, , Sisodiya SM, , Lemieux L, , Woermann FG, & Fish DR, : Identifying homologous anatomical landmarks on reconstructed magnetic resonance images of the human cerebral cortical surface. J Anat 193:559571, 1998

    • Search Google Scholar
    • Export Citation
  • 13

    Ochiai T, , Grimault S, , Scavarda D, , Roch G, , Hori T, & Riviere D, : Sulcal pattern and morphology of the superior temporal sulcus. Neuroimage 22:706719, 2004

    • Search Google Scholar
    • Export Citation
  • 14

    Quester R, & Schröder R: The shrinkage of the human brain stem during formalin fixation and embedding in paraffin. J Neurosci Methods 75:8189, 1997

    • Search Google Scholar
    • Export Citation
  • 15

    Quiñones-Hinojosa A, , Ojemann SG, , Sanai N, , Dillon WP, & Berger MS: Preoperative correlation of intraoperative cortical mapping with magnetic resonance imaging landmarks to predict localization of the Broca area. J Neurosurg 99:311318, 2003

    • Search Google Scholar
    • Export Citation
  • 16

    Reinges MH, , Nguyen HH, , Krings T, , Hütter BO, , Rohde V, & Gilsbach JM: Course of brain shift during microsurgical resection of supratentorial cerebral lesions: limits of conventional neuronavigation. Acta Neurochir (Wien) 146:369377, 2004

    • Search Google Scholar
    • Export Citation
  • 17

    Rhoton AL Jr: Aneurysms. Neurosurgery 51:2158, 2002

  • 18

    Rhoton AL Jr: The lateral and third ventricles. Neurosurgery 51:207271, 2002

  • 19

    Ribas GC, , Ribas EC, & Rodrigues CJ: The anterior sylvian point and the suprasylvian operculum. Neurosurg Focus 18:6B E2, 2005

  • 20

    Ribas GC, , Yasuda A, , Ribas EC, , Nishikuni K, & Rodrigues AJ Jr: Surgical anatomy of microneurosurgical sulcal key points. Neurosurgery 59:177211, 2006

    • Search Google Scholar
    • Export Citation
  • 21

    Sinha TK, , Miga MI, , Cash DM, & Weil RJ: Intraoperative cortical surface characterization using laser range scanning: preliminary results. Neurosurgery 59:368377, 2006

    • Search Google Scholar
    • Export Citation
  • 22

    Tanriover N, , Rhoton AL, , Kawashima M, , Ulm AJ, & Yasuda A: Microsurgical anatomy of the insula and the Sylvian fissure. J Neurosurg 100:891922, 2004

    • Search Google Scholar
    • Export Citation
  • 23

    Tubbs RS, , O'Neil JT Jr, , Key CD, , Zarzour JG, , Fulghum SB, & Kim EJ, : Superficial temporal artery as an external landmark for deeper-lying brain structures. Clin Anat 20:498501, 2006

    • Search Google Scholar
    • Export Citation
  • 24

    Tubbs RS, , Salter G, & Oakes WJ: Superficial surgical landmarks for the transverse sinus and torcular herophili. J Neurosurg 93:279281, 2000

    • Search Google Scholar
    • Export Citation
  • 25

    Ucerler H, & Govsa F: Asterion as a surgical surgical landmark for lateral cranial base approaches. J Craniomaxillofac Surg 34:415420, 2006

    • Search Google Scholar
    • Export Citation
  • 26

    Ugur HC, , Kahilogullari G, , Coscarella E, , Unlu A, , Tekdemir I, & Morcos JJ, : Arterial vascularization of primary motor cortex (precentral gyrus). Surg Neurol 64:4852, 2005

    • Search Google Scholar
    • Export Citation
  • 27

    Ugur HC, , Kahilogullari G, , Esmer AF, , Comert A, , Odabasi AB, & Tekdemir I, : A neurosurgical view of anatomical variations of the distal anterior cerebral artery: an anatomical study. J Neurosurg 104:278284, 2006

    • Search Google Scholar
    • Export Citation
  • 28

    Uz A, , Ugur HC, & Tekdemir I: Is the asterion a reliable landmark the lateral approach to posterior fossa?. J Clin Neurosci 8:146147, 2001

    • Search Google Scholar
    • Export Citation
  • 29

    Wen HT, , Rhoton AL Jr, & Marino R Jr: Gray matter overlying anterior basal temporal sulcus an intraoperative landmark for locating the temporal horn in amygdalohippocampectomies. Neurosurgery 59:221227, 2006

    • Search Google Scholar
    • Export Citation
  • 30

    Wolfsberger S, , Rössler K, , Regatschnig R, & Ungersböck K: Anatomical landmarks for image registration in frameless stereotactic neuronavigation. Neurosurg Rev 25:6872, 2002

    • Search Google Scholar
    • Export Citation
  • 31

    Yaşargil MG, , Türe U, & Yaşargil DC: Surgical anatomy of supratentorial midline lesions. Neurosurg Focus 18:6B E1, 2005

Metrics

All Time Past Year Past 30 Days
Abstract Views 502 294 27
Full Text Views 181 19 0
PDF Downloads 169 20 0
EPUB Downloads 0 0 0