Avoiding the ventricle: a simple step to improve accuracy of anatomical targeting during deep brain stimulation

Clinical article

Ludvic Zrinzo Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, Queen Square, London;
Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London, United Kingdom;

Search for other papers by Ludvic Zrinzo in
Current site
Google Scholar
PubMed
Close
 M.D., M.Sc., F.R.C.S.Ed. (Neuro.Surg)
,
Arjen L. J. van Hulzen Department of Neurosurgery, University Medical Centre Groningen, The Netherlands;

Search for other papers by Arjen L. J. van Hulzen in
Current site
Google Scholar
PubMed
Close
 M.Sc.
,
Alessandra A. Gorgulho Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, California; and

Search for other papers by Alessandra A. Gorgulho in
Current site
Google Scholar
PubMed
Close
 M.D.
,
Patricia Limousin Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, Queen Square, London;

Search for other papers by Patricia Limousin in
Current site
Google Scholar
PubMed
Close
 M.D., Ph.D.
,
Michiel J. Staal Department of Neurosurgery, University Medical Centre Groningen, The Netherlands;

Search for other papers by Michiel J. Staal in
Current site
Google Scholar
PubMed
Close
 M.D., Ph.D.
,
Antonio A. F. De Salles Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, California; and

Search for other papers by Antonio A. F. De Salles in
Current site
Google Scholar
PubMed
Close
 M.D., Ph.D.
, and
Marwan I. Hariz Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, Queen Square, London;
Department of Neurosurgery, University Hospital of Northern Sweden, Umeå, Sweden

Search for other papers by Marwan I. Hariz in
Current site
Google Scholar
PubMed
Close
 M.D., Ph.D.
Restricted access

Purchase Now

USD  $45.00

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $536.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $636.00
USD  $45.00
USD  $536.00
USD  $636.00
Print or Print + Online Sign in

Object

The authors examined the accuracy of anatomical targeting during electrode implantation for deep brain stimulation in functional neurosurgical procedures. Special attention was focused on the impact that ventricular involvement of the electrode trajectory had on targeting accuracy.

Methods

The targeting error during electrode placement was assessed in 162 electrodes implanted in 109 patients at 2 centers. The targeting error was calculated as the shortest distance from the intended stereotactic coordinates to the final electrode trajectory as defined on postoperative stereotactic imaging. The trajectory of these electrodes in relation to the lateral ventricles was also analyzed on postoperative images.

Results

The trajectory of 68 electrodes involved the ventricle. The targeting error for all electrodes was calculated: the mean ± SD and the 95% CI of the mean was 1.5 ± 1.0 and 0.1 mm, respectively. The same calculations for targeting error for electrode trajectories that did not involve the ventricle were 1.2 ± 0.7 and 0.1 mm. A significantly larger targeting error was seen in trajectories that involved the ventricle (1.9 ± 1.1 and 0.3 mm; p < 0.001). Thirty electrodes (19%) required multiple passes before final electrode implantation on the basis of physiological and/or clinical observations. There was a significant association between an increased requirement for multiple brain passes and ventricular involvement in the trajectory (p < 0.01).

Conclusions

Planning an electrode trajectory that avoids the ventricles is a simple precaution that significantly improves the accuracy of anatomical targeting during electrode placement for deep brain stimulation. Avoidance of the ventricles appears to reduce the need for multiple passes through the brain to reach the desired target as defined by clinical and physiological observations.

Abbreviation used in this paper:

DBS = deep brain stimulation.
  • Collapse
  • Expand
  • 1

    Bejjani BP, , Dormont D, , Pidoux B, , Yelnik J, , Damier P, & Arnulf I, et al.: Bilateral subthalamic stimulation for Parkinson's disease by using three-dimensional stereotactic magnetic resonance imaging and electrophysiological guidance. J Neurosurg 92:615625, 2000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2

    Benabid AL, , Krack PP, , Benazzouz A, , Limousin P, , Koudsie A, & Pollak P: Deep brain stimulation of the subthalamic nucleus for Parkinson's disease: methodologic aspects and clinical criteria. Neurology 55:12 Suppl S40S44, 2000

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3

    Bjartmarz H, & Rehncrona S: Comparison of accuracy and precision between frame-based and frameless stereotactic navigation for deep brain stimulation electrode implantation. Stereotact Funct Neurosurg 85:235242, 2007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4

    Breit S, , LeBas JF, , Koudsie A, , Schulz J, , Benazzouz A, & Pollak P, et al.: Pretargeting for the implantation of stimulation electrodes into the subthalamic nucleus: a comparative study of magnetic resonance imaging and ventriculography. Neurosurgery 58:1 Suppl ONS8395, 2006

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5

    Burchiel KJ, , Nguyen TT, , Coombs BD, & Szumoski J: MRI distortion and stereotactic neurosurgery using the Cosman-Roberts-Wells and Leksell frames. Stereotact Funct Neurosurg 66:123136, 1996

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6

    Carter DA, , Parsai EI, & Ayyangar KM: Accuracy of magnetic resonance imaging stereotactic coordinates with the cosmanroberts-wells frame. Stereotact Funct Neurosurg 72:3546, 1999

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7

    Chen CC, , Pogosyan A, , Zrinzo LU, , Tisch S, , Limousin P, & Ashkan K, et al.: Intra-operative recordings of local field potentials can help localize the subthalamic nucleus in Parkinson's disease surgery. Exp Neurol 198:214221, 2006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8

    Coubes P, , Cif L, , El Fertit H, , Hemm S, , Vayssiere N, & Serrat S, et al.: Electrical stimulation of the globus pallidus internus in patients with primary generalized dystonia: long-term results. J Neurosurg 101:189194, 2004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9

    Coxeter HSM: Introduction to Geometry ed 2 New York, Wiley, 1969

  • 10

    De Salles AA, , Frighetto L, , Behnke E, , Sinha S, , Tseng L, & Torres R, et al.: Functional neurosurgery in the MRI environment. Minim Invasive Neurosurg 47:284289, 2004

  • 11

    Deuschl G, , Schade-Brittinger C, , Krack P, , Volkmann J, , Schafer H, & Botzel K, et al.: A randomized trial of deep-brain stimulation for Parkinson's disease. N Engl J Med 355:896908, 2006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12

    Elias WJ, , Fu KM, & Frysinger RC: Cortical and subcortical brain shift during stereotactic procedures. J Neurosurg 107:983988, 2007

  • 13

    Fiegele T, , Feuchtner G, , Sohm F, , Bauer R, , Anton JV, & Gotwald T, et al.: Accuracy of stereotactic electrode placement in deep brain stimulation by intraoperative computed tomography. Parkinsonism Relat Disord 14:595599, 2008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14

    Halpern CH, , Samadani U, , Litt B, , Jaggi JL, & Baltuch GH: Deep brain stimulation for epilepsy. Neurotherapeutics 5:5967, 2008

  • 15

    Hamid NA, , Mitchell RD, , Mocroft P, , Westby GW, , Milner J, & Pall H: Targeting the subthalamic nucleus for deep brain stimulation: technical approach and fusion of pre- and postoperative MR images to define accuracy of lead placement. J Neurol Neurosurg Psychiatry 76:409414, 2005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16

    Hariz MI, , Krack P, , Melvill R, , Jorgensen JV, , Hamel W, & Hirabayashi H, et al.: A quick and universal method for stereotactic visualization of the subthalamic nucleus before and after implantation of deep brain stimulation electrodes. Stereotact Funct Neurosurg 80:96101, 2003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17

    Hirabayashi H, , Tengvar M, & Hariz MI: Stereotactic imaging of the pallidal target. Mov Disord 17:3 Suppl S130S134, 2002

  • 18

    Holloway KL, , Gaede SE, , Starr PA, , Rosenow JM, , Ramakrishnan V, & Henderson JM: Frameless stereotaxy using bone fiducial markers for deep brain stimulation. J Neurosurg 103:404413, 2005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19

    Khan MF, , Mewes K, , Gross RE, & Skrinjar O: Assessment of brain shift related to deep brain stimulation surgery. Stereotact Funct Neurosurg 86:4453, 2008

  • 20

    Landi A, , Marina R, , DeGrandi C, , Crespi A, , Montanari G, & Sganzerla EP, et al.: Accuracy of stereotactic localisation with magnetic resonance compared to CT scan: experimental findings. Acta Neurochir (Wien) 143:593601, 2001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21

    Lee MW, , De Salles AA, , Frighetto L, , Torres R, , Behnke E, & Bronstein JM: Deep brain stimulation in intraoperative MRI environment—comparison of imaging techniques and electrode fixation methods. Minim Invasive Neurosurg 48:16, 2005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22

    Limousin P, , Pollak P, , Benazzouz A, , Hoffmann D, , Le Bas JF, & Broussolle E, et al.: Effect of parkinsonian signs and symptoms of bilateral subthalamic nucleus stimulation. Lancet 345:9195, 1995

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23

    Maciunas RJ, , Galloway RL Jr, & Latimer JW: The application accuracy of stereotactic frames. Neurosurgery 35:682685, 1994

  • 24

    Martin AJ, , Larson PS, , Ostrem JL, , Keith Sootsman W, , Talke P, & Weber OM, et al.: Placement of deep brain stimulator electrodes using real-time high-field interventional magnetic resonance imaging. Magn Reson Med 54:11071114, 2005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25

    Menuel C, , Garnero L, , Bardinet E, , Poupon F, , Phalippou D, & Dormont D: Characterization and correction of distortions in stereotactic magnetic resonance imaging for bilateral subthalamic stimulation in Parkinson disease. J Neurosurg 103:256266, 2005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26

    Miyagi Y, , Shima F, & Sasaki T: Brain shift: an error factor during implantation of deep brain stimulation electrodes. J Neurosurg 107:989997, 2007

  • 27

    Mueller J, , Skogseid IM, , Benecke R, , Kupsch A, , Trottenberg T, & Poewe W, et al.: Pallidal deep brain stimulation improves quality of life in segmental and generalized dystonia: results from a prospective, randomized sham-controlled trial. Mov Disord 23:131134, 2008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28

    Orth RC, , Sinha P, , Madsen EL, , Frank G, , Korosec FR, & Mackie TR, et al.: Development of a unique phantom to assess the geometric accuracy of magnetic resonance imaging for stereotactic localization. Neurosurgery 45:14231431, 1999

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29

    Patel NK, , Plaha P, & Gill SS: Magnetic resonance imaging-directed method for functional neurosurgery using implantable guide tubes. Neurosurgery 61:358366, 2007

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30

    Pollo C, , Villemure JG, , Vingerhoets F, , Ghika J, , Maeder P, & Meuli R: Magnetic resonance artifact induced by the electrode Activa 3389: an in vitro and in vivo study. Acta Neurochir (Wien) 146:161164, 2004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31

    Pollo C, , Vingerhoets F, , Pralong E, , Ghika J, , Maeder P, & Meuli R, et al.: Localization of electrodes in the subthalamic nucleus on magnetic resonance imaging. J Neurosurg 106:3644, 2007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32

    Reid RW: Observations on the relation of the principal fissures and convolutions of the cerebrum to the outer surface of the scalp. Lancet 124:539540, 1884

  • 33

    Schrader B, , Hamel W, , Weinert D, & Mehdorn HM: Documentation of electrode localization. Mov Disord 17:3 Suppl S167S174, 2002

  • 34

    Simon SL, , Douglas P, , Baltuch GH, & Jaggi JL: Error analysis of MRI and Leksell stereotactic frame target localization in deep brain stimulation surgery. Stereotact Funct Neurosurg 83:15, 2005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35

    Treuer H, , Hunsche S, , Hoevels M, , Luyken K, , Maarouf M, & Voges J, et al.: The influence of head frame distortions on stereotactic localization and targeting. Phys Med Biol 49:38773887, 2004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36

    Vayssiere N, , Hemm S, , Zanca M, , Picot MC, , Bonafe A, & Cif L, et al.: Magnetic resonance imaging stereotactic target localization for deep brain stimulation in dystonic children. J Neurosurg 93:784790, 2000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37

    Velasco AL, , Velasco F, , Jimenez F, , Velasco M, , Castro G, & Carrillo-Ruiz JD, et al.: Neuromodulation of the centromedian thalamic nuclei in the treatment of generalized seizures and the improvement of the quality of life in patients with Lennox-Gastaut syndrome. Epilepsia 47:12031212, 2006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38

    West J, , Fitzpatrick JM, , Wang MY, , Dawant BM, , Maurer CR Jr, & Kessler RM, et al.: Comparison and evaluation of retrospective intermodality brain image registration techniques. J Comput Assist Tomogr 21:554566, 1997

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39

    Wu TH, , Lee JS, , Wu HM, , Chu WF, & Guo WY: Evaluating geometric accuracy of multi-platform stereotactic neuroimaging in radiosurgery. Stereotact Funct Neurosurg 78:3948, 2002

  • 40

    Yelnik J, , Damier P, , Demeret S, , Gervais D, , Bardinet E, & Bejjani BP, et al.: Localization of stimulating electrodes in patients with Parkinson disease by using a three-dimensional atlasmagnetic resonance imaging coregistration method. J Neurosurg 99:8999, 2003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41

    Yu C, , Apuzzo ML, , Zee CS, & Petrovich Z: A phantom study of the geometric accuracy of computed tomographic and magnetic resonance imaging stereotactic localization with the Leksell stereotactic system. Neurosurgery 48:10921099, 2001

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42

    Zrinzo L, , Zrinzo LV, , Tisch S, , Limousin PD, , Yousry TA, & Afshar F, et al.: Stereotactic localization of the human pedunculopontine nucleus: atlas-based coordinates and validation of a magnetic resonance imaging protocol for direct localization. Brain 131:15881598, 2008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 1344 363 34
Full Text Views 324 39 2
PDF Downloads 191 17 3
EPUB Downloads 0 0 0