Proton magnetic resonance spectroscopy in pituitary macroadenomas: preliminary results

Laboratory investigation

View More View Less
  • 1 Departments of Neurosurgery and
  • 5 Neuroradiology, University of Erlangen–Nuremberg, Erlangen;
  • 3 Institute of Pathology, Marienkrankenhaus, Hamburg, Germany;
  • 2 Department of Radiology, Landesklinikum St. Poelten; and
  • 4 MR Centre of Excellence, Department of Radiology, Medical University of Vienna, Austria
Restricted access

Purchase Now

USD  $45.00

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $505.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $600.00
Print or Print + Online

Object

The aim of this study was to correlate proton MR (1H-MR) spectroscopy data with histopathological and surgical findings of proliferation and hemorrhage in pituitary macroadenomas.

Methods

Quantitative 1H-MR spectroscopy was performed on a 1.5-T unit in 37 patients with pituitary macroadenomas. A point-resolved spectroscopy sequence (TR 2000 msec, TE 135 msec) with 128 averages and chemical shift selective pulses for water suppression was used. Voxel dimensions were adapted to ensure that the volume of interest was fully located within the lesion and to obtain optimal homogeneity of the magnetic field. In addition, water-unsuppressed spectra (16 averages) were acquired from the same volume of interest for eddy current correction, absolute quantification of metabolite signals, and determination of full width at half maximum of the unsuppressed water peak (FWHMwater). Metabolite concentrations of choline-containing compounds (Cho) were computed using the LCModel program and correlated with MIB-1 as a proliferative cell index from a tissue specimen.

Results

In 16 patients harboring macroadenomas without hemorrhage, there was a strong positive linear correlation between metabolite concentrations of Cho and the MIB-1 proliferative cell index (R = 0.819, p < 0.001). The metabolite concentrations of Cho ranged from 1.8 to 5.2 mM, and the FWHMwater was 4.4–11.7 Hz. Eleven patients had a hemorrhagic adenoma and showed no assignable metabolite concentration of Cho, and the FWHMwater was 13.4–24.4 Hz. In 10 patients the size of the lesion was too small (< 20 mm in 2 directions) for the acquisition of MR spectroscopy data.

Conclusions

Quantitative 1H-MR spectroscopy provided important information on the proliferative potential and hemorrhaging of pituitary macroadenomas. These data may be useful for noninvasive structural monitoring of pituitary macroadenomas. Differences in the FWHMwater could be explained by iron ions of hemosiderin, which lead to worsened homogeneity of the magnetic field.

Abbreviations used in this paper: ACTH = adrenocorticotropic hormone; Cho = choline-containing compounds; [Cho] = absolute metabolite concentrations of Cho; FOV = field of view; FSH = follicle-stimulating hormone; FWHMwater = full width at half maximum of the unsuppressed water peak; GH = growth hormone; 1H-MR = proton MR; LH = luteinizing hormone; PCI = proliferative cell index; PRL = prolactin; SD = standard deviation; VOI = volume of interest.

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $505.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $600.00

Contributor Notes

Address correspondence to: Oliver Ganslandt, M.D., Schwabachanlage 6, 91054 Erlangen, Germany. email: oliver.ganslandt@uk-erlangen.de.
  • 1

    Abe T, , Sanno N, , Osamura YR, & Matsumoto K: Proliferative potential in pituitary adenomas: measurement by monoclonal antibody MIB-1. Acta Neurochir (Wien) 139:613618, 1997

    • Search Google Scholar
    • Export Citation
  • 2

    Anzalone N, , Scotti R, & Riva R: Neuroradiologic differential diagnosis of cerebral intraparenchymal hemorrhage. Neurol Sci 25:1 Suppl S3S5, 2004

    • Search Google Scholar
    • Export Citation
  • 3

    Arnold DL, , Emrich JF, , Shoubridge EA, , Villemure JG, & Feindel W: Characterization of astrocytomas, meningiomas, and pituitary adenomas by phosphorus magnetic resonance spectroscopy. J Neurosurg 74:447453, 1991

    • Search Google Scholar
    • Export Citation
  • 4

    Bonneville JF, , Bonneville F, & Cattin F: Magnetic resonance imaging of pituitary adenomas. Eur Radiol 15:543548, 2005

  • 5

    Bonneville F, , Cattin F, , Marsot-Dupuch K, , Dormont D, , Bonneville JF, & Chiras J: T1 signal hyperintensity in the sellar region: spectrum of findings. Radiographics 26:93113, 2006

    • Search Google Scholar
    • Export Citation
  • 6

    Buchfelder M, , Fahlbusch R, , Adams EF, , Kiesewetter F, & Thierauf P: Proliferation parameters for pituitary adenomas. Acta Neurochir Suppl 65 1821, 1996

    • Search Google Scholar
    • Export Citation
  • 7

    Caruso RD, , Rosenbaum AE, , Sherry RG, , Wasenko JJ, , Joy SE, & Hochhauser L, : Pituitary gland. Variable signal intensities on MRI. A pictorial essay. Clin Imaging 22:327332, 1998

    • Search Google Scholar
    • Export Citation
  • 8

    Gerdes J, , Lemke H, , Baisch H, , Wacker HH, , Schwab U, & Stein H: Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67. J Immunol 133:17101715, 1984

    • Search Google Scholar
    • Export Citation
  • 9

    Herminghaus S, , Pilatus U, , Moller-Hartmann W, , Raab P, , Lanfermann H, & Schlote W, : Increased choline levels coincide with enhanced proliferative activity of human neuroepithelial brain tumors. NMR Biomed 15:385392, 2002

    • Search Google Scholar
    • Export Citation
  • 10

    Honegger J, , Prettin C, , Feuerhake F, , Petrick M, , Schulte-Monting J, & Reincke M: Expression of Ki-67 antigen in nonfunctioning pituitary adenomas: correlation with growth velocity and invasiveness. J Neurosurg 99:674679, 2003

    • Search Google Scholar
    • Export Citation
  • 11

    Isobe T, , Matsumura A, , Anno I, , Yoshizawa T, , Nagatomo Y, & Itai Y, : Quantification of cerebral metabolites in glioma patients with proton MR spectroscopy using T2 relaxation time correction. Magn Reson Imaging 20:343349, 2002

    • Search Google Scholar
    • Export Citation
  • 12

    Kinoshita Y, , Kajiwara H, , Yokota A, & Koga Y: Proton magnetic resonance spectroscopy of brain tumors: an in vitro study. Neurosurgery 35:606614, 1994

    • Search Google Scholar
    • Export Citation
  • 13

    Kinoshita Y, & Yokota A: Absolute concentrations of metabolites in human brain tumors using in vitro proton magnetic resonance spectroscopy. NMR Biomed 10:212, 1997

    • Search Google Scholar
    • Export Citation
  • 14

    Kitz K, , Knosp E, , Koos WT, & Korn A: Proliferation in pituitary adenomas: measurement by MAb KI 67. Acta Neurochir Suppl (Wien) 53:6064, 1991

    • Search Google Scholar
    • Export Citation
  • 15

    Knosp E, , Kitz K, & Perneczky A: Proliferation activity in pituitary adenomas: measurement by monoclonal antibody Ki-67. Neurosurgery 25:927930, 1989

    • Search Google Scholar
    • Export Citation
  • 16

    Kurihara N, , Takahashi S, , Higano S, , Ikeda H, , Mugikura S, & Singh LN, : Hemorrhage in pituitary adenoma: correlation of MR imaging with operative findings. Eur Radiol 8:971976, 1998

    • Search Google Scholar
    • Export Citation
  • 17

    Losa M, , Franzin A, , Mangili F, , Terreni MR, , Barzaghi R, & Veglia F, : Proliferation index of nonfunctioning pituitary adenomas: correlations with clinical characteristics and longterm follow-up results. Neurosurgery 47:13131318, 2000

    • Search Google Scholar
    • Export Citation
  • 18

    Majos C, , Alonso J, , Aguilera C, , Serrallonga M, , Acebes JJ, & Arus C, : Adult primitive neuroectodermal tumor: proton MR spectroscopic findings with possible application for differential diagnosis. Radiology 225:556566, 2002

    • Search Google Scholar
    • Export Citation
  • 19

    Matsumura A, , Isobe T, , Anno I, , Takano S, & Kawamura H: Correlation between choline and MIB-1 index in human gliomas. A quantitative in proton MR spectroscopy study. J Clin Neurosci 12:416420, 2005

    • Search Google Scholar
    • Export Citation
  • 20

    Michaelis T, , Merboldt KD, , Bruhn H, , Hanicke W, & Frahm J: Absolute concentrations of metabolites in the adult human brain in vivo: quantification of localized proton MR spectra. Radiology 187:219227, 1993

    • Search Google Scholar
    • Export Citation
  • 21

    Miller BL: A review of chemical issues in 1H NMR spectroscopy: N-acetyl-L-aspartate, creatine and choline. NMR Biomed 4:4752, 1991

  • 22

    Nakabayashi H, , Sunada I, & Hara M: Immunohistochemical analyses of cell cycle-related proteins, apoptosis, and proliferation in pituitary adenomas. J Histochem Cytochem 49:11931194, 2001

    • Search Google Scholar
    • Export Citation
  • 23

    Negendank WG, , Sauter R, , Brown TR, , Evelhoch JL, , Falini A, & Gotsis ED, : Proton magnetic resonance spectroscopy in patients with glial tumors: a multicenter study. J Neurosurg 84:449458, 1996

    • Search Google Scholar
    • Export Citation
  • 24

    Ott D, , Hennig J, & Ernst T: Human brain tumors: assessment with in vivo proton MR spectroscopy. Radiology 186:745 752, 1993

  • 25

    Provencher SW: Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med 30:672679, 1993

  • 26

    Shino A, , Nakasu S, , Matsuda M, , Handa J, , Morikawa S, & Inubushi T: Noninvasive evaluation of the malignant potential of intracranial meningiomas performed using proton magnetic resonance spectroscopy. J Neurosurg 91:928934, 1999

    • Search Google Scholar
    • Export Citation
  • 27

    Spiller M, , Childress SM, , Koenig SH, , Duffy KR, , Valsamis MP, & Tenner MS, : Secretory and nonsecretory pituitary adenomas are distinguishable by 1/T1 magnetic relaxation rates at very low magnetic fields in vitro. Invest Radiol 32:320329, 1997

    • Search Google Scholar
    • Export Citation
  • 28

    Stadlbauer A, , Gruber S, , Nimsky C, , Fahlbusch R, , Hammen T, & Buslei R, : Preoperative grading of gliomas by using metabolite quantification with high-spatial-resolution proton MR spectroscopic imaging. Radiology 238:958969, 2006

    • Search Google Scholar
    • Export Citation
  • 29

    Tanaka Y, , Hongo K, , Tada T, , Sakai K, , Kakizawa Y, & Kobayashi S: Growth pattern and rate in residual nonfunctioning pituitary adenomas: correlations among tumor volume doubling time, patient age, and MIB-1 index. J Neurosurg 98:359365, 2003

    • Search Google Scholar
    • Export Citation
  • 30

    Turner HE, & Wass JA: Are markers of proliferation valuable in the histological assessment of pituitary tumours?. Pituitary 1:147151, 1999

    • Search Google Scholar
    • Export Citation
  • 31

    Usenius JP, , Kauppinen RA, , Vainio PA, , Hernesniemi JA, , Vapalahti MP, & Paljarvi LA, : Quantitative metabolite patterns of human brain tumors: detection by 1H NMR spectroscopy in vivo and in vitro. J Comput Assist Tomogr 18:705713, 1994

    • Search Google Scholar
    • Export Citation
  • 32

    Wismer GL, , Buxton RB, , Rosen BR, , Fisel CR, , Oot RF, & Brady TJ, : Susceptibility induced MR line broadening: applications to brain iron mapping. J Comput Assist Tomogr 12:259265, 1988

    • Search Google Scholar
    • Export Citation
  • 33

    Wolfsberger S, , Wunderer J, , Zachenhofer I, , Czech T, , Bocher-Schwarz HG, & Hainfellner J, : Expression of cell proliferation markers in pituitary adenomas—correlation and clinical relevance of MIB-1 and anti-topoisomerase-IIalpha. Acta Neurochir (Wien) 146:831839, 2004

    • Search Google Scholar
    • Export Citation
  • 34

    Zou KH, , Tuncali K, & Silverman SG: Correlation and simple linear regression. Radiology 227:617622, 2003

Metrics

All Time Past Year Past 30 Days
Abstract Views 443 276 11
Full Text Views 153 3 0
PDF Downloads 99 3 0
EPUB Downloads 0 0 0