Integrated positron emission tomography and magnetic resonance imaging–guided resection of brain tumors: a report of 103 consecutive procedures

Benoît Pirotte Departments of Neurosurgery, Neuropathology, and Neuroradiology; and PET/Cyclotron Biomédical Unit, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium

Search for other papers by Benoît Pirotte in
Current site
Google Scholar
PubMed
Close
 M.D.
,
Serge Goldman Departments of Neurosurgery, Neuropathology, and Neuroradiology; and PET/Cyclotron Biomédical Unit, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium

Search for other papers by Serge Goldman in
Current site
Google Scholar
PubMed
Close
 M.D., Ph.D.
,
Olivier Dewitte Departments of Neurosurgery, Neuropathology, and Neuroradiology; and PET/Cyclotron Biomédical Unit, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium

Search for other papers by Olivier Dewitte in
Current site
Google Scholar
PubMed
Close
 M.D., Ph.D.
,
Nicolas Massager Departments of Neurosurgery, Neuropathology, and Neuroradiology; and PET/Cyclotron Biomédical Unit, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium

Search for other papers by Nicolas Massager in
Current site
Google Scholar
PubMed
Close
 M.D.
,
David Wikler Departments of Neurosurgery, Neuropathology, and Neuroradiology; and PET/Cyclotron Biomédical Unit, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium

Search for other papers by David Wikler in
Current site
Google Scholar
PubMed
Close
 M.S.
,
Florence Lefranc Departments of Neurosurgery, Neuropathology, and Neuroradiology; and PET/Cyclotron Biomédical Unit, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium

Search for other papers by Florence Lefranc in
Current site
Google Scholar
PubMed
Close
 M.D.
,
Nordeyn Oulad Ben Taib Departments of Neurosurgery, Neuropathology, and Neuroradiology; and PET/Cyclotron Biomédical Unit, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium

Search for other papers by Nordeyn Oulad Ben Taib in
Current site
Google Scholar
PubMed
Close
 M.D.
,
Sandrine Rorive Departments of Neurosurgery, Neuropathology, and Neuroradiology; and PET/Cyclotron Biomédical Unit, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium

Search for other papers by Sandrine Rorive in
Current site
Google Scholar
PubMed
Close
 M.D.
,
Philippe David Departments of Neurosurgery, Neuropathology, and Neuroradiology; and PET/Cyclotron Biomédical Unit, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium

Search for other papers by Philippe David in
Current site
Google Scholar
PubMed
Close
 M.D.
,
Jacques Brotchi Departments of Neurosurgery, Neuropathology, and Neuroradiology; and PET/Cyclotron Biomédical Unit, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium

Search for other papers by Jacques Brotchi in
Current site
Google Scholar
PubMed
Close
 M.D., Ph.D.
, and
Marc Levivier Departments of Neurosurgery, Neuropathology, and Neuroradiology; and PET/Cyclotron Biomédical Unit, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium

Search for other papers by Marc Levivier in
Current site
Google Scholar
PubMed
Close
 M.D., Ph.D.
Restricted access

Purchase Now

USD  $45.00

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $525.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $624.00
USD  $45.00
USD  $525.00
USD  $624.00
Print or Print + Online Sign in

Object

The aim of this study was to evaluate the integration of positron emission tomography (PET) scanning data into the image-guided resection of brain tumors.

Methods

Positron emission tomography scans obtained using fluorine-18 fluorodeoxyglucose (FDG) and l-[methyl-11C]methionine (MET) were combined with magnetic resonance (MR) images in the navigational planning of 103 resections of brain tumors (63 low-grade gliomas [LGGs] and 40 high-grade gliomas [HGGs]). These procedures were performed in 91 patients (57 males and 34 females) in whom tumor boundaries could not be accurately identified on MR images for navigation-based resection. The level and distribution of PET tracer uptake in the tumor were analyzed to define the lesion contours, which in turn yielded a PET volume. The PET scanning–demonstrated lesion volume was subsequently projected onto MR images and compared with MR imaging data (MR volume) to define a final target volume for navigation-based resection—the tumor contours were displayed in the microscope’s eyepiece. Maximal tumor resection was accomplished in each case, with the intention of removing the entire area of abnormal metabolic activity visualized during surgical planning. Early postoperative MR imaging and PET scanning studies were performed to assess the quality of tumor resection. Both pre- and postoperative analyses of MR and PET images revealed whether integrating PET data into the navigational planning contributed to improved tumor volume definition and tumor resection.

Metabolic information on tumor heterogeneity or extent was useful in planning the surgery. In 83 (80%) of 103 procedures, PET studies contributed to defining a final target volume different from that obtained with MR imaging alone. Furthermore, FDG-PET scanning, which was performed in a majority of HGG cases, showed that PET volume was less extended than the MR volume in 16 of 21 cases and contributed to targeting the resection to the hypermetabolic (anaplastic) area in 11 (69%) of 16 cases. Performed in 59 LGG cases and 23 HGG cases, MET-PET demonstrated that the PET volume did not match the MR volume and improved the tumor volume definition in 52 (88%) of 59 and 18 (78%) of 23, respectively. Total resection of the area of increased PET tracer uptake was achieved in 54 (52%) of 103 procedures.

Conclusions

Imaging guidance with PET scanning provided independent and complementary information that helped to assess tumor extent and plan tumor resection better than with MR imaging guidance alone. The PET scanning guidance could help increase the amount of tumor removed and target image-guided resection to tumor portions that represent the highest evolving potential.

Abbreviations used in this paper:

CT = computerized tomography; FDG = fluorine-18 fluorodeoxyglucose; FLAIR = fluid-attenuated inversion-recovery; FTV = final target volume; Gd-DTPA = gadolinium diethylenetriamine pentaacetic acid; HGG = high-grade glioma; LGG = low-grade glioma; MET = l-[methyl-11C]methionine; MR = magnetic resonance; PET = positron emission tomography; WHO = World Health Organization; 3D = three-dimensional.
  • Collapse
  • Expand
  • 1

    Alavi JB, , Alavi A, , Chawluk J, , Kushner M, , Powe J, & Hickey W, et al.: Positron emission tomography in patients with glioma. A predictor of prognosis. Cancer 62:10741078, 1988

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2

    Albright AL: Pediatric brain tumors. Ca Cancer J Clin 43:272288, 1993

  • 3

    Bergstrom M, , Ericson K, , Hagenfeldt L, , Mosskin M, , von Holst H, & Noren G, et al.: PET study of methionine accumulation in glioma and normal brain tissue: competition with branched chain amino acids. J Comput Assist Tomogr 11:208213, 1987

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4

    Black PM: Brain tumors. Part 1 N Engl J Med 324:14711476, 1991

  • 5

    Black PM: Brain tumors. Part 2 N Engl J Med 324:15551564, 1991

  • 6

    Bowers DC, , Krause TP, , Aronson LJ, , Barzi A, , Burger PC, & Carson BS, et al.: Second surgery for recurrent pilocytic astrocytoma in children. Pediatr Neurosurg 34:229234, 2001

  • 7

    Braun V, , Dempf S, , Tomczak R, , Wunderlich A, , Weller R, & Richter HP: Functional cranial neuronavigation. Direct integration of fMRI and PET data. J Neuroradiol 27:157163, 2000

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8

    Braun V, , Dempf S, , Tomczak R, , Wunderlich A, , Weller R, & Richter HP: Multimodal cranial neuronavigation: direct integration of functional magnetic resonance imaging and positron emission tomography data: technical note. Neurosurgery 48:11781182, 2001

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9

    Bruggers CS, , Friedman HS, , Fuller GN, , Tien RD, , Marks LB, & Halperin EC, et al.: Comparison of serial PET and MRI scans in a pediatric patient with a brainstem glioma. Med Pediatr Oncol 21:301306, 1993

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10

    Chandrasoma PT, , Smith MM, & Apuzzo MLJ: Stereotactic biopsy in the diagnosis of brain masses: comparison of results of biopsy and resected surgical specimen. Neurosurgery 24:160165, 1989

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11

    Cohen KJ, , Broniscer A, & Glod J: Pediatric glial tumors. Curr Treat Options Oncol 2:529536, 2001

  • 12

    Coleman RE, , Hoffman JM, , Hanson MW, , Sostman HD, & Schold SC: Clinical application of PET for the evaluation of brain tumors. J Nucl Med 32:616622, 1991

  • 13

    Connolly LP, , Drubach LA, & Ted Treves S: Applications of nuclear medicine in pediatric oncology. Clin Nucl Med 27:117125, 2002

  • 14

    Daneyemez M, , Gezen F, , Canakci Z, & Kahraman S: Radical surgery and reoperation in supratentorial malignant glial tumors. Minim Invasive Neurosurg 41:209213, 1998

  • 15

    De Witte O, , Goldberg I, , Wikler D, , Rorive S, , Damhaut P, & Monclus M, et al.: Positron emission tomography with injection of methionine as a prognostic factor in glioma. J Neurosurg 95:746750, 2001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16

    De Witte O, , Levivier M, & Violon P: Prognostic value of positron emission tomography with [18F]fluoro-2-deoxy-D-glucose in the low-grade glioma. Neurosurgery 39:470476, 1996

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17

    Deloar HM, , Fujiwara T, , Nakamura T, , Itoh M, , Imai D, & Miyake M, et al.: Estimation of internal absorbed dose of L-[methyl-11C]methionine using whole-body positron emission tomography. Eur J Nucl Med 25:629633, 1998

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18

    Derlon JM, , Bourdet C, , Bustany P, , Chatel M, , Theron J, & Darcel F, et al.: [11C]L-methionine uptake in gliomas. Neurosurgery 25:720728, 1989

  • 19

    Dethy S, , Goldman S, , Blecic S, , Luxen A, , Levivier M, & Hildebrand J: Carbon-11-methionine and fluorine-18-FDG PET study in a brain hematoma. J Nucl Med 35:11621166, 1994

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20

    Dethy S, , Manto M, , Kentos A, , Konopnicki D, , Pirotte B, & Goldman S, et al.: PET findings in a brain associated with a silent atrial septal defect. Clin Neurol Neurosurg 97:349353, 1995

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21

    Di Chiro G: Positron emission tomography using [18F] fluorodeoxyglucose in brain tumors. A powerful diagnostic and prognostic tool. Invest Radiol 22:360371, 1987

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22

    Ericson K, , Lilja A, , Bergstrom M, , Collins VP, , Eriksson L, & Ehrin E, et al.: Positron emission tomography with ([11C]methyl)-L-methionine, [11C]D-glucose, and [68Ga]EDTA in supratentorial tumors. J Comput Assist Tomogr 9:683689, 1985

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23

    Essig M, , Metzner R, , Bonsanto M, , Hawighorst H, , Debus J, & Tronnier V, et al.: Postoperative fluid-attenuated inversion recovery MR imaging of cerebral gliomas: initial results. Eur Radiol 11:20042010, 2001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24

    Fahlbusch R, , Honegger J, , Paulus W, , Huk W, & Buchfelder M: Surgical treatment of craniopharyngiomas: experience with 168 patients. J Neurosurg 90:237250, 1999

  • 25

    Feiden W, , Steude U, , Bise K, & Gundisch O: Accuracy of stereotactic brain tumor biopsy: comparison of the histological findings in biopsy cylinders and resected tumor tissue. Neurosurg Rev 14:5156, 1991

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26

    Foreman NK, , Love S, , Gill SS, & Coakham HB: Second-look surgery for incompletely resected fourth ventricle ependymomas: technical case report. Neurosurgery 40:856860, 1997

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27

    Garty I, , Delbeke D, & Sandler MP: Correlative pediatric imaging. J Nucl Med 30:1524, 1989

  • 28

    Glantz MJ, , Burger PC, , Herndon JE II, , Friedman AH, , Cairncross JG, & Vick NA, et al.: Influence of the type of surgery on the histologic diagnosis in patients with anaplastic gliomas. Neurology 41:17411744, 1991

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29

    Goldman S, , Levivier M, , Pirotte B, , Brucher JM, , Wikler D, & Damhaut P, et al.: Regional glucose metabolism and histopathology of gliomas. A study based on positron emission tomography-guided stereotactic biopsy . Cancer 78:10981106, 1996

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30

    Goldman S, , Levivier M, , Pirotte B, , Brucher JM, , Wikler D, & Damhaut P, et al.: Regional methionine and glucose uptake in high grade gliomas: a comparative study on PET-guided stereotactic biopsy. J Nucl Med 38:14591462, 1997

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31

    Hoffman JM, , Hanson MW, , Friedman HS, , Hockenberger BM, , Oakes WJ, & Halperin EC, et al.: FDG-PET in pediatric posterior fossa brain tumors. J Comput Assist Tomogr 16:6268, 1992

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32

    Holthoff VA, , Herholz K, , Berthold F, , Widemann B, , Schroder R, & Neubauer I, et al.: In vivo metabolism of childhood posterior fossa tumors and primitive neuroectodermal tumors before and after treatment. Cancer 72:13941403, 1993

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33

    Kaplan AM, , Bandy DJ, , Manwaring KH, , Chen K, , Lawson MA, & Moss SD, et al.: Functional brain mapping using positron emission tomography scanning in preoperative neurosurgical planning for pediatric brain tumors. J Neurosurg 91:797803, 1999

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34

    Kaschten B, , Stevenaert A, , Sadzot B, , Deprez M, , Degueldre C, & Del Fiore G, et al.: Preoperative evaluation of 54 gliomas by PET with fluorine-18-fluorodeoxyglucose and/or carbon-11-methionine. J Nucl Med 39:778785, 1998

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35

    Kelly PJ, , Daumas-Duport C, , Kispert DB, , Kall BA, , Scheithauer BW, & Illig JJ: Imaging-based stereotaxic serial biopsies in untreated intracranial glial neoplasms. J Neurosurg 66:865874, 1987

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36

    Khan RB, , Sanford RA, , Kun LE, & Thompson SJ: Morbidity of second- look surgery in pediatric central nervous system tumors. Pediatr Neurosurg 35:225229, 2001

  • 37

    Kleihues P, , Burger PC, & Scheithauer BW: The new WHO classification of brain tumors. Brain Pathol 3:255268, 1993

  • 38

    Kowalczuk A, , Macdonald RL, , Amidei C, , Dohrmann G III, , Erickson RK, & Hekmatpanah J, et al.: Quantitative imaging study of extent of surgical resection and prognosis of malignant astrocytomas. Neurosurgery 41:10281038, 1997

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39

    Kraus GE, , Bernstein TW, , Satter M, , Ezzeddine B, , Hwang DR, & Mantil J: A technique utilizing positron emission tomography and magnetic resonance/computed tomography image fusion to aid in surgical navigation and tumor volume determination. J Image Guid Surg 1:300307, 1995

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40

    Levivier M, , Goldman S, , Bidaut LM, , Luxen A, , Stanus E, & Przedborski S, et al.: Positron emission tomography-guided stereotactic brain biopsy. Neurosurgery 31:792797, 1992

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41

    Levivier M, , Goldman S, , Pirotte B, , Brucher JM, , Balériaux D, & Luxen A, et al.: Diagnostic yield of stereotactic brain biopsy guided by positron emission tomography with [18F]fluorodeoxyglucose. J Neurosurg 82:445452, 1995

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42

    Levivier M, , Massager N, , Wikler D, , Lorenzoni J, , Ruiz S, & Devriendt D, et al.: Use of stereotactic PET images in dosimetry planning of radiosurgery for brain tumors: clinical experience and proposed classification. J Nucl Med 45:11461154, 2004

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43

    Levivier M, , Wikler D, , Goldman S, , Pirotte B, , Dewitte O, & Brotchi J, Positron emission tomography in stereotactic conditions as a functional imaging technique for neurosurgical guidance. Alexander EB III, & Maciunas RM: Advanced Neurosurgical Navigation. New York, Thieme, 1999. 8599

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44

    Levivier M, , Wikler D Jr, , Massager N, , David P, , Devriendt D, & Lorenzoni J, et al.: The integration of metabolic imaging in stereotactic procedures including radiosurgery: a review. J Neurosurg 97 :5 Suppl 542550, 2002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45

    Maes F, , Collignon A, , Vandermeulen D, , Marchal G, & Suetens P: Multimodality image registration by maximization of mutual information. IEEE Trans Med Imaging 16:187198, 1997

  • 46

    Mariani L, , Siegenthaler P, , Guzman R, , Friedrich D, , Fathi AR, & Ozdoba C, et al.: The impact of tumor volume and surgery on the outcome of adults with supratentorial WHO grade II astrocytomas and oligoastrocytomas. Acta Neurochir (Wien) 146:441448, 2004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47

    Massager N, , David P, , Goldman S, , Pirotte B, , Wikler D, & Salmon I, et al.: Combined magnetic resonance imaging– and positron emission tomography–guided stereotactic biopsy in brainstem mass lesions: diagnostic yield in a series of 30 patients. J Neurosurg 93:951957, 2000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48

    Mineura K, , Yasuda T, , Kowada M, , Sakamoto T, , Ogawa T, & Shishido F, et al.: Positron emission tomographic evaluations in the diagnosis and therapy of multifocal glioblastoma. Report of a pediatric case. Pediatr Neurosci 12:208212, 1986

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49

    Mohan KK, , Chugani DC, & Chugani HT: Positron emission tomography in pediatric neurology. Semin Pediatr Neurol 6:111119, 1999

  • 50

    Molenkamp G, , Riemann B, , Kuwert T, , Strater R, , Kurlemann G, & Schober O, et al.: Monitoring tumor activity in low grade glioma of childhood. Klin Padiatr 210:239242, 1998

  • 51

    Nadel HR: Where are we with nuclear medicine in pediatrics?. Eur J Nucl Med 22:14331451, 1995

  • 52

    Oser AB, , Moran CJ, , Kaufman BA, & Park TS: Intracranial tumor in children: MR imaging findings within 24 hours of craniotomy. Radiology 205:807812, 1997

  • 53

    Patronas NJ, , Brooks RA, , DeLaPaz RL, , Smith BH, , Kornblith PL, & Di Chiro G: Glycolytic rate (PET) and contrast enhancement (CT) in human cerebral gliomas. AJNR Am J Neuroradiol 4:533535, 1983

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54

    Paulino AC, , Wen BC, , Buatti JM, , Hussey DH, , Zhen WK, & Mayr NA, et al.: Intracranial ependymomas: an analysis of prognostic factors and patterns of failure. Am J Clin Oncol 25:117122, 2002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55

    Paulus W, & Peiffer J: Intratumoral histologic heterogeneity of gliomas. A quantitative study. Cancer 64:442447, 1989

  • 56

    Pirotte B, , Goldman S, , Brucher JM, , Zomosa G, , Baleriaux D, & Brotchi J, et al.: PET in stereotactic conditions increases the diagnostic yield of brain biopsy. Stereotact Funct Neurosurg 63:144149, 1994

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57

    Pirotte B, , Goldman S, , David P, , Wikler D, , Damhaut P, & Vandesteene A, et al.: Stereotactic brain biopsy guided by positron emission tomography (PET) with [F-18]fluorodeoxyglucose and [C-11]methionine. Acta Neurochir Suppl 68:133138, 1997

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58

    Pirotte B, , Goldman S, , Massager N, , David P, , Wikler D, & Lipszyc M, et al.: Combined use of 18F-fluorodeoxyglucose and 11C-methionine in 45 positron emission tomography–guided stereotactic brain biopsies. J Neurosurg 101:476483, 2004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59

    Pirotte B, , Goldman S, , Massager N, , David P, , Wikler D, & Vandesteene A, et al.: Comparison of 18F-FDG and 11C-methionine for PET-guided stereotactic brain biopsy in gliomas. J Nucl Med 45:12931298, 2004

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 60

    Pirotte B, , Goldman S, , Salzberg S, , Wikler D, , David P, & Vandesteene A, et al.: Combined positron emission tomography and magnetic resonance imaging for the planning of stereotactic brain biopsies in children: experience in 9 cases. Pediatr Neurosurg 38:146155, 2003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 61

    Pirotte B, , Levivier M, , Morelli D, , Van Bogaert P, , Detemmerman D, & David P, et al.: Positron emission tomography for the early postsurgical evaluation of pediatric brain tumors. Childs Nerv Syst 21:294300, 2005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 62

    Pollack IF: The role of surgery in pediatric gliomas. J Neurooncol 42:271288, 1999

  • 63

    Ruotsalainen U, , Suhonen-Polvi H, , Eronen E, , Kinnala A, , Bergman J, & Haaparanta M, et al.: Estimated radiation dose to the newborn in FDG-PET studies. J Nucl Med 37:387393, 1996

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 64

    Shulkin BL: PET applications in pediatrics. Q J Nucl Med 41:281291, 1997

  • 65

    Sobottka SB, , Bredow J, , Beuthien-Baumann B, , Reiss G, , Schackert G, & Steinmeier R: Comparison of functional brain PET images and intraoperative brain-mapping data using image-guided surgery. Comput Aided Surg 7:317325, 2002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 66

    Utriainen M, , Metsähonkala L, , Salmi TT, , Utriainen T, , Kalimo H, & Pihko H, et al.: Metabolic characterization of childhood brain tumors: comparison of 18F-fluorodeoxyglucose and 11C-methionine positron emission tomography. Cancer 95:13761386, 2002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 67

    Wells WM III, , Viola P, , Atsumi H, , Nakajima S, & Kikinis R: Multimodal volume registration by maximization of mutual information. Med Image Anal 1:3551, 1996

  • 68

    Wong TZ, , van der Westhuizen GJ, & Coleman RE: Positron emission tomography imaging of brain tumors. Neuroimaging Clin N Am 12:615626, 2002

  • 69

    Yokoyama J, , Ikawa H, , Endow M, , Fuchimoto Y, , Watanabe K, & Hosoya R, et al.: The role of surgery in advanced neuroblastoma. Eur J Pediatr Surg 5:2326, 1995

Metrics

All Time Past Year Past 30 Days
Abstract Views 1498 387 32
Full Text Views 281 23 10
PDF Downloads 174 11 2
EPUB Downloads 0 0 0